Single-camera 3D head fitting for mixed reality clinical applications
Tài liệu tham khảo
Agrawal, S., Pahuja, A., Lucey, S., 2020. High accuracy face geometry capture using a smartphone video. In: IEEE Workshop on Applic of Comput Vis. pp. 81–90.
Alexander, O., Fyffe, G., Busch, J., Yu, X., Ichikari, R., Jones, A., Debevec, P., Jimenez, J., Danvoye, E., Antionazzi, B., et al., 2013. Digital ira: Creating a real-time photoreal digital actor. In: ACM SIGGRAPH Posters. pp. 1.
AliceVision, 2018
Alldieck, 2018, Detailed human avatars from monocular video, 98
Badger, 2020
Beeler, 2010, High-quality single-shot capture of facial geometry, ACM Trans. Graph., 29, 10.1145/1778765.1778777
Blanz, V., Vetter, T., 1999. A morphable model for the synthesis of 3D faces. In: Conf on Comput Graph and Interactive Techniques. pp. 187–194.
Booth, 2018, Large scale 3D morphable models, Int. J. Comput. Vis., 126, 233, 10.1007/s11263-017-1009-7
Bulat, A., Tzimiropoulos, G., 2017. How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks). In: IEEE Int Conf on Comput Vis. pp. 1021–1030.
Cao, 2018, Stabilized real-time face tracking via a learned dynamic rigidity prior, ACM Trans. Graph., 37, 10.1145/3272127.3275093
Cao, X., Chen, Z., Chen, A., Chen, X., Li, S., Yu, J., 2018. Sparse photometric 3D face reconstruction guided by morphable models. In: IEEE Int Conf on Comput Vis and Patt Recognit. pp. 4635–4644.
Cao, 2013, Facewarehouse: A 3d facial expression database for visual computing, IEEE J. VCG, 20, 413
Dai, 2019, Statistical modeling of craniofacial shape and texture, Int. J. Comput. Vis., 128, 547, 10.1007/s11263-019-01260-7
Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y., Tong, X., 2019. Accurate 3D face reconstruction with weakly-supervised learning: From single image to image set. In: IEEE Int Conf on Comput Vis and Patt RecognitWorkshops. pp. 285–295.
Furukawa, 2015, Multi-view stereo: A tutorial, Found. Trends Comput. Graph. Vis., 10.1561/0600000052
Fyffe, 2015, Driving high-resolution facial scans with video performance capture, ACM Trans. Graph., 34
Fyffe, 2017, Multi-view stereo on consistent face topology, Comput. Graph. Forum, 36, 295, 10.1111/cgf.13127
Goel, 2020
Guo, 2018
Guo, J., Zhu, X., Yang, Y., Yang, F., Lei, Z., Li, S.Z., 2020. Towards fast, accurate and stable 3D dense face alignment. In: IEEE European Conf on Comput Vis.
Hartley, 2003
Hu, 2017, Avatar digitization from a single image for real-time rendering, ACM Trans. Graph., 36, 1, 10.1145/3072959.3092817
Hu, 2017, Efficient 3D morphable face model fitting, Lecture Notes in Comput. Sci., 67, 366
Huber, P., Hu, G., Tena, R., Mortazavian, P., Koppen, P., Christmas, W.J., Ratsch, M., Kittler, J., 2016. A multiresolution 3D morphable face model and fitting framework. In: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications.
Jancosek, M., Pajdla, T., 2011. Multi-view reconstruction preserving weakly-supported surfaces. In: IEEE Int Conf on Comput Vis and Patt Recognit. pp. 3121–3128.
Kanazawa, 2018
Kim, 2018, Deep video portraits, ACM Trans. Graph., 37, 1
King, 2009, Dlib-ml: A machine learning toolkit, J. Mach. Learn. Res., 10, 1755
Lee, Y., Terzopoulos, D., Waters, K., 1995. Realistic modeling for facial animation. In: Conf on Comput Graph and Interactive Techniques. pp. 55–62.
Li, 2017, Learning a model of facial shape and expression from 4D scans, ACM Trans. Graph., 10.1145/3130800.3130813
Liang, 2018, Video to fully automatic 3D hair model, ACM Trans. Graph., 37, 206, 10.1145/3272127.3275020
Loper, 2015, SMPL: A skinned multi-person linear model, ACM Trans. Graph., 34, 248:1, 10.1145/2816795.2818013
Moré, 1978, The Levenberg-Marquardt algorithm: Implementation and theory, 105
Moulon, 2012, Adaptive structure from motion with a contrario model estimation, 257
Nam, G., Wu, C., Kim, M.H., Sheikh, Y., 2019. Strand-accurate multi-view hair capture. In: IEEE Int Conf on Comput Vis and Patt Recognit. pp. 155–164.
Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T., 2009. A 3D face model for pose and illumination invariant face recognition. In: IEEE Int Conf on Advanced Video and Signal Based Surveillance, AVSS for Security, Safety and Monitoring in Smart Environments. pp. 296–301.
Ploumpis, 2020, Towards a complete 3D morphable model of the human head, IEEE Trans. Pattern Anal. Mach. Intell.
Schönberger, J.L., Frahm, J.-M., 2016. Structure-from-motion revisited. In: IEEE Int Conf on Comput Vis and Patt Recognit. pp. 4104–4113.
Schönberger, J.L., Zheng, E., Pollefeys, M., Frahm, J.-M., 2016. Pixelwise view selection for unstructured multi-view stereo. In: IEEE European Conf on Comput Vis.
Tran, L., Liu, X., 2018. Nonlinear 3D face morphable model. In: IEEE Int Conf on Comput Vis and Patt Recognit. pp. 7346–7355.
Tuan Tran, A., Hassner, T., Masi, I., Medioni, G., 2017. Regressing robust and discriminative 3D morphable models with a very deep neural network. In: IEEE Int Conf on Comput Vis and Patt Recognit. pp. 5163–5172.
Umeyama, 1991, Least-squares estimation of transformation parameters between two point patterns, IEEE Trans. Pattern Anal. Mach. Intell., 4, 376, 10.1109/34.88573
Zhou, Y., Hu, L., Xing, J., Chen, W., Kung, H.-W., Tong, X., Li, H., 2018b. HairNet: Single-view hair reconstruction using convolutional neural networks. In: IEEE European Conf on Comput Vis. pp. 235–251.
Zhou, 2018
Zhu, 2017, Face alignment in full pose range: A 3D total solution, IEEE Trans. Pattern Anal. Mach. Intell.
Zuffi, S., Kanazawa, A., Berger-Wolf, T., Black, M., 2019. Three-D Safari: Learning to estimate zebra pose, shape, and texture from images in the wild. In: IEEE Int Conf on Comput Vis. pp. 5358–5367.