Single-camera 3D head fitting for mixed reality clinical applications

Computer Vision and Image Understanding - Tập 218 - Trang 103384 - 2022
Tejas Mane1, Aylar Bayramova1, Kostas Daniilidis2, Philippos Mordohai3, Elena Bernardis1
1Department of Dermatology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
2Department of Computer and Information Science, University of Pennsylvania, 3400 Walnut Street, Philadelphia, PA 19104, USA
3Department of Computer Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA

Tài liệu tham khảo

Agrawal, S., Pahuja, A., Lucey, S., 2020. High accuracy face geometry capture using a smartphone video. In: IEEE Workshop on Applic of Comput Vis. pp. 81–90. Alexander, O., Fyffe, G., Busch, J., Yu, X., Ichikari, R., Jones, A., Debevec, P., Jimenez, J., Danvoye, E., Antionazzi, B., et al., 2013. Digital ira: Creating a real-time photoreal digital actor. In: ACM SIGGRAPH Posters. pp. 1. AliceVision, 2018 Alldieck, 2018, Detailed human avatars from monocular video, 98 Badger, 2020 Beeler, 2010, High-quality single-shot capture of facial geometry, ACM Trans. Graph., 29, 10.1145/1778765.1778777 Blanz, V., Vetter, T., 1999. A morphable model for the synthesis of 3D faces. In: Conf on Comput Graph and Interactive Techniques. pp. 187–194. Booth, 2018, Large scale 3D morphable models, Int. J. Comput. Vis., 126, 233, 10.1007/s11263-017-1009-7 Bulat, A., Tzimiropoulos, G., 2017. How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks). In: IEEE Int Conf on Comput Vis. pp. 1021–1030. Cao, 2018, Stabilized real-time face tracking via a learned dynamic rigidity prior, ACM Trans. Graph., 37, 10.1145/3272127.3275093 Cao, X., Chen, Z., Chen, A., Chen, X., Li, S., Yu, J., 2018. Sparse photometric 3D face reconstruction guided by morphable models. In: IEEE Int Conf on Comput Vis and Patt Recognit. pp. 4635–4644. Cao, 2013, Facewarehouse: A 3d facial expression database for visual computing, IEEE J. VCG, 20, 413 Dai, 2019, Statistical modeling of craniofacial shape and texture, Int. J. Comput. Vis., 128, 547, 10.1007/s11263-019-01260-7 Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y., Tong, X., 2019. Accurate 3D face reconstruction with weakly-supervised learning: From single image to image set. In: IEEE Int Conf on Comput Vis and Patt RecognitWorkshops. pp. 285–295. Furukawa, 2015, Multi-view stereo: A tutorial, Found. Trends Comput. Graph. Vis., 10.1561/0600000052 Fyffe, 2015, Driving high-resolution facial scans with video performance capture, ACM Trans. Graph., 34 Fyffe, 2017, Multi-view stereo on consistent face topology, Comput. Graph. Forum, 36, 295, 10.1111/cgf.13127 Goel, 2020 Guo, 2018 Guo, J., Zhu, X., Yang, Y., Yang, F., Lei, Z., Li, S.Z., 2020. Towards fast, accurate and stable 3D dense face alignment. In: IEEE European Conf on Comput Vis. Hartley, 2003 Hu, 2017, Avatar digitization from a single image for real-time rendering, ACM Trans. Graph., 36, 1, 10.1145/3072959.3092817 Hu, 2017, Efficient 3D morphable face model fitting, Lecture Notes in Comput. Sci., 67, 366 Huber, P., Hu, G., Tena, R., Mortazavian, P., Koppen, P., Christmas, W.J., Ratsch, M., Kittler, J., 2016. A multiresolution 3D morphable face model and fitting framework. In: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. Jancosek, M., Pajdla, T., 2011. Multi-view reconstruction preserving weakly-supported surfaces. In: IEEE Int Conf on Comput Vis and Patt Recognit. pp. 3121–3128. Kanazawa, 2018 Kim, 2018, Deep video portraits, ACM Trans. Graph., 37, 1 King, 2009, Dlib-ml: A machine learning toolkit, J. Mach. Learn. Res., 10, 1755 Lee, Y., Terzopoulos, D., Waters, K., 1995. Realistic modeling for facial animation. In: Conf on Comput Graph and Interactive Techniques. pp. 55–62. Li, 2017, Learning a model of facial shape and expression from 4D scans, ACM Trans. Graph., 10.1145/3130800.3130813 Liang, 2018, Video to fully automatic 3D hair model, ACM Trans. Graph., 37, 206, 10.1145/3272127.3275020 Loper, 2015, SMPL: A skinned multi-person linear model, ACM Trans. Graph., 34, 248:1, 10.1145/2816795.2818013 Moré, 1978, The Levenberg-Marquardt algorithm: Implementation and theory, 105 Moulon, 2012, Adaptive structure from motion with a contrario model estimation, 257 Nam, G., Wu, C., Kim, M.H., Sheikh, Y., 2019. Strand-accurate multi-view hair capture. In: IEEE Int Conf on Comput Vis and Patt Recognit. pp. 155–164. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T., 2009. A 3D face model for pose and illumination invariant face recognition. In: IEEE Int Conf on Advanced Video and Signal Based Surveillance, AVSS for Security, Safety and Monitoring in Smart Environments. pp. 296–301. Ploumpis, 2020, Towards a complete 3D morphable model of the human head, IEEE Trans. Pattern Anal. Mach. Intell. Schönberger, J.L., Frahm, J.-M., 2016. Structure-from-motion revisited. In: IEEE Int Conf on Comput Vis and Patt Recognit. pp. 4104–4113. Schönberger, J.L., Zheng, E., Pollefeys, M., Frahm, J.-M., 2016. Pixelwise view selection for unstructured multi-view stereo. In: IEEE European Conf on Comput Vis. Tran, L., Liu, X., 2018. Nonlinear 3D face morphable model. In: IEEE Int Conf on Comput Vis and Patt Recognit. pp. 7346–7355. Tuan Tran, A., Hassner, T., Masi, I., Medioni, G., 2017. Regressing robust and discriminative 3D morphable models with a very deep neural network. In: IEEE Int Conf on Comput Vis and Patt Recognit. pp. 5163–5172. Umeyama, 1991, Least-squares estimation of transformation parameters between two point patterns, IEEE Trans. Pattern Anal. Mach. Intell., 4, 376, 10.1109/34.88573 Zhou, Y., Hu, L., Xing, J., Chen, W., Kung, H.-W., Tong, X., Li, H., 2018b. HairNet: Single-view hair reconstruction using convolutional neural networks. In: IEEE European Conf on Comput Vis. pp. 235–251. Zhou, 2018 Zhu, 2017, Face alignment in full pose range: A 3D total solution, IEEE Trans. Pattern Anal. Mach. Intell. Zuffi, S., Kanazawa, A., Berger-Wolf, T., Black, M., 2019. Three-D Safari: Learning to estimate zebra pose, shape, and texture from images in the wild. In: IEEE Int Conf on Comput Vis. pp. 5358–5367.