Single-boundary control of the two-phase Stefan system

Systems and Control Letters - Tập 135 - Trang 104573 - 2020
Shumon Koga1, Miroslav Krstic1
1Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0411, USA

Tài liệu tham khảo

Koga, 2019 Petrus, 2012, Enthalpy-based feedback control algorithms for the stefan problem, 7037 Rabin, 1998, Numerical solution of the multidimensional freezing problem during cryosurgery, J. Biomech. Eng., 120, 32, 10.1115/1.2834304 Koga, 2019 Chung, 2004, Numerical modeling of scanning laser-induced melting, vaporization and resolidification in metals subjected to step heat flux input, Int. J. Heat Mass Transfer, 47, 4153, 10.1016/j.ijheatmasstransfer.2004.05.003 Conrad, 1990, Well-posedness of a moving boundary problem arising in a dissolution-growth process, Nonlinear Anal., 15, 445, 10.1016/0362-546X(90)90126-2 Koga, 2017, State estimation for lithium ion batteries with phase transition materials Zalba, 2003, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl. Therm. Eng., 23, 251, 10.1016/S1359-4311(02)00192-8 Gupta, 2003 Friedman, 1999, Analysis of a mathematical model for the growth of tumors, J. Math. Biol., 38, 262, 10.1007/s002850050149 McGilly, 2015, Controlling domain wall motion in ferroelectric thin films, Nature Nanotechnol., 10, 145, 10.1038/nnano.2014.320 Du, 2010, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42, 377, 10.1137/090771089 Lei, 2013, The free boundary problem describing information diffusion in online social networks, J. Differential Equations, 254, 1326, 10.1016/j.jde.2012.10.021 Cannon, 1971, A two phase Stefan problem with temperature boundary conditions, Ann. Mat. Pura Appl., 88, 177, 10.1007/BF02415066 Cannon, 1971, A two phase Stefan problem with flux boundary conditions, Ann. Mat. Pura Appl., 88, 193, 10.1007/BF02415067 Kutluay, 1997, The numerical solution of one-phase classical Stefan problem, J. Comput. Appl. Math., 81, 135, 10.1016/S0377-0427(97)00034-4 Javierre, 2006, A comparison of numerical models for one-dimensional Stefan problems, J. Comput. Appl. Math., 192, 445, 10.1016/j.cam.2005.04.062 Hinze, 2007, Optimal control of the free boundary in a two-phase Stefan problem, J. Comput. Phys., 223, 657, 10.1016/j.jcp.2006.09.030 Maidi, 2014, Boundary geometric control of a linear stefan problem, J. Process Control, 24, 939, 10.1016/j.jprocont.2014.04.010 Krstic, 2008 Krstic, 2009, Compensating actuator and sensor dynamics governed by diffusion PDEs, Systems Control Lett., 58, 372, 10.1016/j.sysconle.2009.01.006 Koga, 2019, Control and state estimation of the one-phase Stefan problem via backstepping design, IEEE Trans. Automat. Control, 64, 510 Koga, 2019 Fantoni, 2000, Energy based control of the pendubot, IEEE Trans. Automat. Control, 45, 725, 10.1109/9.847110 Byrnes, 1988, Local stabilization of minimum-phase nonlinear systems, Systems Control Lett., 11, 9, 10.1016/0167-6911(88)90105-3 Isidori, 2013 Yu, 2019 Oliveira, 2017, Extremum seeking for static maps with delays, IEEE Trans. Automat. Control, 62, 1911, 10.1109/TAC.2016.2564958 Feiling, 2018, Gradient extremum seeking for static maps with actuation dynamics governed by diffusion PDEs, Automatica, 95, 197, 10.1016/j.automatica.2018.05.023