Single-atom catalysis of CO oxidation using Pt1/FeOx

Nature Chemistry - Tập 3 Số 8 - Trang 634-641 - 2011
Botao Qiao1, Aiqin Wang2, Xiaofeng Yang3, Lawrence F. Allard4, Zheng Jiang5, Yi‐Tao Cui6, Jingyue Liu7,2, Jun Li3, Tao Zhang2
1State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
2State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
3Dept. of Chemistry Tsinghua University Beijing China
4Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, USA.
5Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
6State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
7Department of Physics & Astronomy, and Department of Chemistry & Biochemistry, Center for Nanoscience, University of Missouri-St Louis, Missouri, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 36, 153–166 (1997).

Chen, M. & Goodman, D. W. The structure of catalytically active gold on titania. Science 306, 252–255 (2004).

Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P. & Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 1331–1335 (2008).

Turner, M. et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454, 981–983 (2008).

Vajda, S. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nature Mater. 8, 213–216 (2009).

Judai, K., Abbet, S., Worz, A. S., Heiz, U. & Henry, C. R. Low-temperature cluster catalysis. J. Am. Chem. Soc. 126, 2732–2737 (2004).

Lei, Y. et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328, 224–228 (2010).

Remediakis, I. N., Lopez, N. & Nørskov, J. K. CO oxidation on rutile-supported Au nanoparticles. Angew. Chem. Int. Ed. 44, 1824–1826 (2005).

Uzun, A., Ortalan, V., Browning, N. D. & Gates, B. C. A site-isolated mononuclear iridium complex catalyst supported on MgO: characterization by spectroscopy and aberration-corrected scanning transmission electron microscopy. J. Catal. 269, 318–328 (2010).

Uzun, A., Ortalan, V., Hao, Y., Browning, N. D. & Gates, B. C. Nanoclusters of gold on a high-area support: almost uniform nanoclusters imaged by scanning transmission electron microscopy. ACS Nano 3, 3691–3695 (2009).

Kaden, W. E., Wu, T., Kunkel, W. A. & Anderson, S. L. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326, 826–829 (2009).

Böhme, D. K. & Schwarz, H. Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. Angew. Chem. Int. Ed. 44, 2336–2354 (2005).

Lee, S. S., Fan, C. Y., Wu, T. P. & Anderson, S. L. CO oxidation on Aun/TiO2 catalysts produced by size-selected cluster deposition. J. Am. Chem. Soc. 126, 5682–5683 (2004).

Yoon, B. et al. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307, 403–407 (2005).

Matthey, D. et al. Enhanced bonding of gold nanoparticles on oxidized TiO2(110). Science 315, 1692–1696 (2007).

Kwak, J. H. et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3 . Science 325, 1670–1673 (2009).

Qiao, B. & Deng, Y. Highly effective ferric hydroxide supported gold catalyst for selective oxidation of CO in the presence of H2 . Chem. Commun. 2192–2193 (2003).

Qiao, B., Liu, L., Zhang, J. & Deng, Y. Preparation of highly effective ferric hydroxide supported noble metal catalysts for CO oxidations: from gold to palladium. J. Catal. 261, 241–244 (2009).

Nellist, P. D. & Pennycook, S. J. Direct imaging of the atomic configuration of ultradispersed catalysts. Science 274, 413–415 (1996).

Pennycook, S. J. Z-contrast stem for materials science. Ultramicroscopy 30, 58–69 (1989).

Wang, S. et al. Dopants adsorbed as single atoms prevent degradation of catalysts. Nature Mater. 3, 143–146 (2004).

Nellist, P. D. et al. Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741–1741 (2004).

Sohlberg, K., Rashkeev, S., Borisevich, A. Y., Pennycook, S. J. & Pantelides, S. T. Origin of anomalous Pt–Pt distances in the Pt/alumina catalytic system. ChemPhysChem 5, 1893–1897 (2004).

Pennycook, S. J. et al. Aberration-corrected scanning transmission electron microscopy: from atomic imaging and analysis to solving energy problems. Phil. Trans. R. Soc. A 367, 3709–3733 (2009).

Ortalan, V., Uzun, A., Gates, B. C. & Browning, N. D. Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite. Nature Nanotech. 5, 506–510 (2010).

Li, Z. Y. et al. Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451, 46–48 (2008).

Allard, L. F. et al. Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy. J. Electron Microsc. (Tokyo) 58, 199–212 (2009).

Chang, J-R., Koningsberger, D. C. & Gates, B. C. Structurally simple supported platinum clusters prepared from [Pt15(CO)30]2− on magnesium oxide. J. Am. Chem. Soc. 114, 6460–6466 (1992).

Xiao, L. & Wang, L. Structures of platinum clusters: planar or spherical? J. Phys. Chem. A 108, 8605–8614 (2004).

Yoshida, H. et al. XANES study of the support effect on the state of platinum catalysts. J. Synchrotron Radiat. 6, 471–473 (1999).

Pozdnyakova, O. et al. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: oxidation state and surface species on Pt/CeO2 under reaction conditions. J. Catal. 237, 1–16 (2006).

Greenler, R. G. et al. Stepped single-crystal surfaces as models for small catalyst particles. Surf. Sci. 152–153, 338–345 (1985).

Brandt, R. K., Hughes, M. R., Bourget, L. P., Truszkowska, K. & Greenler, R. G. The interpretation of CO adsorbed on Pt/SiO2 of two different particle-size distributions. Surf. Sci. 286, 15–25 (1993).

Kappers, M. & Maas, J. Correlation between CO frequency and Pt coordination number. A DRIFT study on supported Pt catalysts. Catal. Lett. 10, 365–373 (1991).

Hadjiivanov, K. I. & Vayssilov, G. N. Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Adv. Catal. 47, 307–511 (2002).

Bazin, P., Saur, O., Lavalley, J. C., Daturi, M. & Blanchard, G. FT-IR study of CO adsorption on Pt/CeO2: characterisation and structural rearrangement of small Pt particles. Phys. Chem. Chem. Phys. 7, 187–194 (2005).

Gruene, P., Fielicke, A., Meijer, G. & Rayner, D. M. The adsorption of CO on group 10 (Ni, Pd, Pt) transition-metal clusters. Phys. Chem. Chem. Phys. 10, 6144–6149 (2008).

Xie, X., Li, Y., Liu, Z-Q., Haruta, M. & Shen, W. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458, 746–749 (2009).

Fu, Q. et al. Interface-confined ferrous centers for catalytic oxidation. Science 328, 1141–1144 (2010).

Haruta, M., Yamada, N., Kobayashi, T. & Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 115, 301–309 (1989).

Haruta, M. Catalysis of gold nanoparticles deposited on metal oxides. CATTECH 6, 102–115 (2002).

Huang, Y. Q., Wang, A. Q., Wang, X. D. & Zhang, T. Preferential oxidation of CO under excess H2 conditions over iridium catalysts. Int. J. Hydrogen Energy 32, 3880–3886 (2007).

Wang, X. G. et al. The hematite (α-Fe2O3) (0001) surface: evidence for domains of distinct chemistry. Phys. Rev. Lett. 81, 1038–1041 (1998).

Yamamoto, S. et al. Water adsorption on α-Fe2O3 (0001) at near ambient conditions. J. Phys. Chem. C 114, 2256–2266 (2010).

Jin, J. J., Ma, X. Y., Kim, C. Y., Ellis, D. E. & Bedzyk, M. J. Adsorption of V on a hematite (0001) surface and its oxidation: submonolayer coverage. Surf. Sci. 601, 3082–3098 (2007).

Lübbe, M. & Moritz, W. A LEED analysis of the clean surfaces of α-Fe2O3 (0001) and α-Cr2O3 (0001) bulk single crystals. J. Phys.: Condens. Matter 21, 134010 (2009).

Wasserman, E., Rustad, J. R., Felmy, A. R., Hay, B. P. & Halley, J. W. Ewald methods for polarizable surfaces with application to hydroxylation and hydrogen bonding on the (012) and (001) surfaces of α-Fe2O3 . Surf. Sci. 385, 217–239 (1997).

Thevuthasan, S. et al. Surface structure of MBE-grown α-Fe2O3(0001) by intermediate-energy X-ray photoelectron diffraction. Surf. Sci. 425, 276–286 (1999).

Alavi, A., Hu, P., Deutsch, T., Silvestrelli, P. L. & Hutter, J. CO oxidation on Pt(111): an ab initio density functional theory study. Phys. Rev. Lett. 80, 3650–3653 (1998).

Fu, Q., Saltsburg, H. & Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water–gas shift catalysts. Science 301, 935–938 (2003).