Single‐atom catalysis for carbon neutrality

Carbon Energy - Tập 4 Số 6 - Trang 1021-1079 - 2022
Ligang Wang1, Dingsheng Wang1, Yadong Li1
1Department of Chemistry, Tsinghua University, Beijing, China

Tóm tắt

Abstract

Currently, more than 86% of global energy consumption is still mainly dependent on traditional fossil fuels, which causes resource scarcity and even emission of high amounts of carbon dioxide (CO2), resulting in a severe “Greenhouse effect.” Considering this situation, the concept of “carbon neutrality” has been put forward by 125 countries one after another. To achieve the goals of “carbon neutrality,” two main strategies to reduce CO2emissions and develop sustainable clean energy can be adopted. Notably, these are crucial for the synthesis of advanced single‐atom catalysts (SACs) for energy‐related applications. In this review, we highlight unique SACs for conversion of CO2into high‐efficiency carbon energy, for example, through photocatalytic, electrocatalytic, and thermal catalytic hydrogenation technologies, to convert CO2into hydrocarbon fuels (CO, CH4, HCOOH, CH3OH, and multicarbon [C2+] products). In addition, we introduce advanced energy conversion technologies and devices to replace traditional polluting fossil fuels, such as photocatalytic and electrocatalytic water splitting to produce hydrogen energy and a high‐efficiency oxygen reduction reaction (ORR) for fuel cells. Impressively, several representative examples of SACs (includingd‐,ds‐,p‐, andf‐blocks) for CO2conversion, water splitting to H2, and ORR are discussed to describe synthesis methods, characterization, and corresponding catalytic activity. Finally, this review concludes with a description of the challenges and outlooks for future applications of SACs in contributing toward carbon neutrality.

Từ khóa


Tài liệu tham khảo

10.1073/pnas.0907765106

10.1016/j.joule.2019.09.015

ZhangY LuoH WangC. Progressus inquisitiones de mutatione climatis.2021;17:88‐97.

Carbon Neutrality Coalition. Plan of action: Carbon Neutrality Coalition. 2017.https://www.carbon-neutrality.global/plan-of-action/

UNFCCC. Climate ambition alliance: nations renew their push to upscale action by 2020 and achieve net zero CO2emissions by 2050. 2019.https://unfccc.int/news/climate-ambitionalliance-nations-renew-their-push-to-upscale-action-by-2020-andachieve-net-zero

Energy & Climate Intelligence Unit. Net zero emissions race. 2020.https://eciu.net/netzerotracker/map

10.1002/adfm.202003261

10.1002/adma.202008151

10.1021/acs.chemrev.7b00776

10.1038/s41570-018-0010-1

10.1007/s12274-020-2755-3

10.1098/rspa.1925.0061

10.1016/0021-9517(64)90049-1

10.1063/1.437604

10.1038/378159a0

10.1016/S0926-860X(99)00247-1

10.1021/ja9922476

10.1126/science.1085721

10.1002/anie.200502101

10.1002/anie.200702534

10.1126/science.1180297

10.1038/nchem.1095

10.1002/anie.201604802

10.1038/nature21672

10.1038/s41557-020-0473-9

10.1038/s41557-021-00734-x

10.1007/s12274-021-3794-0

10.1016/j.joule.2018.06.019

10.1093/nsr/nwy056

10.1021/acs.chemrev.9b00818

10.1021/jacs.1c02328

10.1021/acs.chemrev.9b00311

10.1007/s12274-020-3244-4

10.1002/adfm.202000768

10.1007/s40843-020-1579-7

10.1016/j.nanoen.2021.106365

10.1002/anie.202115735

10.1007/s12274-020-2827-4

10.1007/s12274-021-3479-8

10.1126/science.1159639

10.1126/science.1215864

10.1126/science.1253150

10.1038/s41929-018-0146-x

10.1038/s41563-019-0412-6

10.1038/s41565-020-0665-x

10.1021/acs.nanolett.1c00432

10.1002/cey2.74

10.1007/s12274-020-2977-4

10.1007/s12274-020-2994-3

10.1016/j.cogsc.2018.11.002

TanX SunX HanB.Ionic liquid‐based electrolytes for CO2electroreduction and CO2electroorganic transformation.Natl Sci Rev. Published online.2021.doi:10.1093/nsr/nwab022

10.1002/cey2.27

Chen S, 2021, MOF encapsulating N‐heterocyclic carbene‐ligated copper single‐atom site catalyst towards efficient methane electrosynthesis, Angew Chem Int Ed, 61, e202114450, 10.1002/anie.202114450

10.1016/j.apmate.2021.10.004

10.1007/s12274-021-3363-6

10.1002/celc.202100438

10.1039/C9CS00713J

WangH.Nanostructure@metal‐organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis electrocatalysis and thermal catalysis.Nano Res. Published online.2021.doi:10.1007/s12274-021-3984-9

10.1002/smsc.202100043

10.1038/s41929-019-0306-7

10.1039/C9CS00163H

10.1039/D1EE00248A

Cui X, 2021, Selective conversion of CO2 by single‐site catalysts, Acta Phys‐Chim Sin, 37, 2006080

10.1126/sciadv.abl4915

10.1039/C6SC03911A

10.1002/aenm.202101477

10.1002/anie.202110433

10.1002/adma.202102212

10.1021/acs.chemrev.0c00594

10.1002/anie.201502099

10.1016/j.nanoen.2019.05.003

10.1039/C7EE03245E

10.1002/anie.202101559

10.1038/s41467-021-25426-5

10.1039/C7CP00915A

10.1007/s40820-020-00443-z

10.1021/jacs.8b00814

10.1038/s41560-017-0078-8

10.1021/jacs.7b02736

10.1002/anie.202016219

10.1126/science.aac8343

10.1002/advs.202001545

10.1002/aenm.201703487

10.1038/s41467-018-03138-7

10.1126/science.aaw7515

10.1038/s41557-018-0201-x

10.1016/j.scib.2021.04.020

10.1002/anie.201916218

10.1002/cctc.202001667

10.1002/anie.202107550

10.1002/anie.202014718

10.1002/anie.202109579

10.1002/anie.202010903

10.1021/jacs.1c00151

10.1039/C9CC06178A

10.1039/D0EE01486A

10.1021/jacs.9b08259

10.1007/s12274-021-3287-1

10.1021/acsnano.9b08835

10.1021/acscatal.6b01393

10.1021/acsenergylett.7b00152

10.1038/s41586-019-1760-8

10.1002/anie.202111136

10.1021/jacs.9b12111

10.1021/acs.nanolett.1c02502

10.1021/jacs.9b04907

10.1038/ncomms9177

10.1002/anie.201907399

10.1007/s12274-019-2316-9

10.1021/jacs.9b05766

10.1021/acscatal.8b01014

10.1002/adma.201808135

10.1002/anie.202109329

10.1039/B800489G

10.1002/adma.201704649

10.1021/jacs.6b02692

10.1021/cs4001392

10.1021/ja5128133

10.1021/ja408574m

10.1002/anie.201509241

10.1021/acscatal.7b00312

10.1016/j.apsusc.2017.10.120

10.1002/anie.202003623

10.1002/anie.201608597

10.1021/jacs.9b02997

10.1021/acsnano.0c04544

10.1039/D1TA02926F

10.1021/acsnano.0c07083

10.1002/smll.202006478

10.1016/j.apcatb.2021.120146

10.1021/jacs.0c09599

10.1038/s41929-021-00665-3

10.1007/s12274-017-1933-4

10.1002/adfm.202104976

10.1002/smll.202102089

10.1021/acscatal.0c01459

10.1021/jacs.8b10380

10.1002/adma.201704624

10.1039/D0GC02836C

10.1016/j.xcrp.2021.100371

10.1016/j.mtphys.2020.100279

10.1002/aenm.202002928

10.1002/smll.202002411

10.1021/acsnano.0c02162

10.1016/j.nanoen.2020.105059

10.1002/advs.201900289

10.1038/s41467-021-21925-7

10.1002/cssc.202000375

MaM HuangZ DoronkinDE et al.Ultrahigh surface density of Co‐N2C single‐atom‐sites for boosting photocatalytic CO2reduction to methanol.Appl Catal B.2021:120695.

10.1021/acsnano.1c03961

10.1021/acsnano.0c02940

10.1021/acscatal.9b00862

10.1016/j.solmat.2019.02.009

10.1021/ar300361m

10.1038/s41467-019-12461-6

10.1021/jacs.8b11729

10.1016/j.chempr.2018.12.014

10.1021/cs400381f

10.1038/s41565-018-0089-z

10.1038/s41467-019-09918-z

10.1016/j.apcatb.2021.120036

10.1021/acscatal.9b02197

10.1038/s41467-019-12459-0

10.1038/s41563-019-0349-9

10.1016/j.apsusc.2019.03.187

10.1002/cey2.79

10.1002/adma.201808066

10.1002/cey2.26

10.1016/j.ces.2018.03.028

10.1002/aenm.201903949

10.1002/anie.202009400

10.1002/adfm.202004310

10.1039/D0TA08630D

10.1038/s41467-021-20951-9

10.1021/jacs.0c02229

10.1002/adma.202103533

10.1002/anie.201710599

10.1002/adma.201800396

10.1002/anie.202107123

10.1021/acsnano.0c05874

10.1021/acscatal.0c05634

10.1002/aenm.201903137

10.1038/s41467-019-12997-7

10.1002/adma.202104764

10.1002/cssc.201701880

10.1039/C7TA03826G

10.1038/s41467-019-08419-3

10.1039/C5EE00751H

10.1021/jacs.8b09834

10.1038/s41467-020-14848-2

10.1038/ncomms9668

10.1016/j.electacta.2018.01.203

10.1038/s41929-018-0203-5

10.1002/anie.201507381

10.1038/s41467-018-07288-6

10.1073/pnas.1813605115

10.1021/jacs.5b09021

10.1038/ncomms10667

10.1021/acs.nanolett.7b02518

10.1039/C8CC03975E

10.1038/ncomms8992

10.1021/jacs.8b00752

10.1038/s41467-018-03896-4

10.1002/anie.201804349

10.1016/j.chempr.2017.12.005

10.1016/j.apcatb.2019.03.053

10.1002/anie.201709803

10.1016/j.apsusc.2021.150151

10.1016/j.ijhydene.2020.12.148

10.1016/j.ijhydene.2021.02.206

10.1021/acs.jpcc.7b11486

10.1002/anie.201904614

10.1039/b919698f

10.1021/cr1001645

10.1021/ja1009025

10.1039/C3CS60378D

10.1246/bcsj.20120058

10.1021/acs.jpcc.1c04054

10.1002/solr.202000283

10.1021/acssuschemeng.8b06273

10.1016/j.mtener.2018.10.014

10.1021/acs.jpcc.9b03003

10.1016/j.susc.2017.11.012

10.1002/smtd.201800447

10.1039/C9QI00511K

10.1002/anie.201912439

10.1002/adfm.202003007

10.3390/catal11040417

10.1002/anie.202001148

10.1021/jacsau.1c00004

10.1016/j.apcatb.2020.119660

10.1002/anie.202013206

10.1016/j.jcat.2017.07.024

10.1002/adma.201505281

10.1016/j.nanoen.2019.104409

10.1002/anie.201904058

10.1021/acsaem.8b00526

10.1002/adfm.201802169

10.1002/anie.201914565

10.1016/j.apcatb.2019.118233

10.1021/acsami.7b13566

10.1002/anie.201706467

10.1002/anie.201704358

10.1039/C9TA10568A

10.1039/D0TA02351E

10.1002/adma.201705112

10.1002/anie.201800817

10.1002/anie.201915774

10.1016/j.nanoen.2017.12.039

10.1002/aenm.202003575

10.1016/j.jcat.2019.06.024

10.1016/j.jechem.2021.03.003

10.1039/D0CP00929F

10.1002/smll.201905166

10.1021/acssuschemeng.8b02001

10.1039/D1TA02547C

10.1021/acscatal.8b03737

10.1039/D0SC07093A

10.1016/j.apsusc.2018.06.298

10.1016/j.cej.2021.131795

10.1016/j.cej.2021.132229

10.1002/chem.201303366

10.1038/s41565-019-0366-5

10.1038/s41586-020-03130-6

10.1021/acscatal.6b02764

10.1039/C7TA03115G

10.1021/acs.chemmater.8b02144

10.1021/ja513292k

10.1126/science.aah4321

10.1021/ja312646d

10.1126/science.1260526

10.1039/C5CY01154J

10.1002/aic.15759

10.1021/jacs.0c11285

10.1002/aenm.202101222

10.1007/s12274-021-3598-2

GaoF TianX‐D LinJ‐S DongJC LinXM LiJF.In situ Raman FTIR and XRD spectroscopic studies in fuel cells and rechargeable batteries.Nano Res. Published online2022.doi:10.1007/s12274-021-4044-1

10.1002/sstr.202000051

10.1016/j.matt.2021.07.019

10.1002/anie.202115219

10.1002/anie.202107790

10.1002/anie.201905241

10.1002/adfm.201807340

10.1021/acsnano.7b02148

10.1021/jacs.9b09234

10.1021/acscentsci.0c00458

10.1038/s41467-018-07850-2

10.1002/anie.202109058

10.1002/anie.201702473

10.1002/adma.202006613

10.1002/anie.202105186

10.1002/anie.202012798

10.1021/jacs.0c07790

10.1002/anie.202107053

10.1002/adma.201706508

10.1021/jacs.7b10194

10.1039/D0EE03701J

10.1002/adma.201801732

10.1002/anie.201906289

10.1002/anie.201804958

10.1002/anie.201812423

10.1021/jacs.1c03135

10.1002/cey2.136

10.1073/pnas.1800771115

10.1039/C8EE00901E

10.1002/adma.202004670

10.1016/j.ensm.2020.12.006

10.1002/smll.202007245

10.1039/C8EE01481G

10.1039/C8TA03759K

10.1016/j.nanoen.2016.12.056

10.1021/acscatal.9b01677

10.1038/s41560-021-00878-7

10.1021/acsenergylett.1c01316

10.1002/cey2.135

10.1002/anie.202102053

10.1039/C9EE02974E

10.1038/s41467-020-16848-8

10.1039/C8EE01169A

10.1016/j.nanoen.2018.01.044

10.1016/j.cej.2019.02.084

10.1002/adfm.201700802

10.1002/anie.201810175

10.1021/jacs.1c03788

10.1002/anie.202108599

10.1021/acscatal.0c05503

10.1016/j.jpowsour.2021.229483

10.1021/acscatal.9b02778

10.1021/jacs.0c10636

10.1002/anie.202003842

10.1016/j.chempr.2019.12.008

10.1038/s41467-020-17782-5

10.1038/s41893-020-00635-w

10.1038/s41563-019-0571-5

10.1021/jacs.9b05576

10.1002/cey2.33

10.1039/C9CS00869A

10.1038/s41467-019-11992-2

10.1021/jacs.9b04569

10.1016/j.jcat.2020.11.020

10.1021/acscatal.6b02899

10.1038/ncomms10922

10.1021/acsenergylett.8b01942

10.1021/jacs.1c08088