Iijima S., 1991, Nature, 354, 56, 10.1038/354056a0
Ajayan P. M., 1993, Nature, 361, 333, 10.1038/361333a0
Novoselov K. S., 2004, Science, 306, 666, 10.1126/science.1102896
Ramanathan T., 2005, Part B: Polym. Phys
Stankovich S., 2006, Nature, 442, 282, 10.1038/nature04969
Duplock E. J., 2004, Phys. Rev. Lett., 92, 225502, 10.1103/PhysRevLett.92.225502
Novoselov K. S., 2005, Proc. Natl. Acad. Sci. U.S.A., 102, 10451, 10.1073/pnas.0502848102
Zhang Y., 2005, Nature, 438, 201, 10.1038/nature04235
Zhang Y., 2005, Phys. Rev. Lett., 94, 176803, 10.1103/PhysRevLett.94.176803
Novoselov K. S., 2005, Nature, 438, 197, 10.1038/nature04233
Schniepp H. C., 2006, J. Phys. Chem. B, 110, 8535, 10.1021/jp060936f
Brodie B. C., 1859, Philos. Trans. R. Soc. London, 149, 249, 10.1098/rstl.1859.0013
Hummers W., 1958, J. Am. Chem. Soc., 80, 1339, 10.1021/ja01539a017
Boehm H. P., 1962, Z. Anorg. Allg. Chem., 316, 119, 10.1002/zaac.19623160303
Boehm H. P., 1965, Z. Anorg. Allg. Chem., 335, 74, 10.1002/zaac.19653350107
Lueking A. D., 2005, J. Phys. Chem. B, 109, 12710, 10.1021/jp0512199
Fukushima H., 2003, Annu. Tech. Conf. − Soc. Plast. Eng.
Matsuo Y., 2002, J. Mater. Chem., 12, 1592, 10.1039/b107436a
Stankovich S., 2006, J. Mater. Chem., 16, 155, 10.1039/B512799H
Staudenmaier L., 1898, Ber. Dtsch. Chem. Ges., 31, 1481, 10.1002/cber.18980310237
Chung D. D. L., 2001, Carbon, 39, 279, 10.1016/S0008-6223(00)00184-6
Adebajo M. O., 2003, J. Porous Mater., 10, 159, 10.1023/A:1027484117065
Kang F. Y., 2003, New Carbon Mater., 18, 161
Celzard A., 2004, Prog. Mater. Sci., 50, 93, 10.1016/j.pmatsci.2004.01.001
Chung D. D. L., 2002, J. Mater. Sci., 37, 1475, 10.1023/A:1014915307738
Lee S., 2005, J. Mater. Sci., 40, 2001
Chen X.-M., 2002, J. Mater. Sci. Lett., 21, 213, 10.1023/A:1014708808230
Chen X. M., 2002, Acta Polym. Sin., 3, 331
Chen G. H., 2001, J. Appl. Polymer Sci., 82, 2506, 10.1002/app.2101
Chen G. H., 2001, Polym. Int., 50, 980, 10.1002/pi.729
Chen G. H., 2003, Polymer, 44, 1781, 10.1016/S0032-3861(03)00050-8
Chen G. H., 2001, Acta Polym. Sin., 6, 803
Chen G. H., 2003, Carbon, 41, 619, 10.1016/S0008-6223(02)00409-8
Zheng W., 2002, Polymer, 43, 6767, 10.1016/S0032-3861(02)00599-2
Zheng W., 2003, Compos. Sci. Technol., 63, 225, 10.1016/S0266-3538(02)00201-4
Peigney A., 2001, Carbon, 39, 507, 10.1016/S0008-6223(00)00155-X
Lopez M. I., 1994, J. Chem. Soc., Faraday Trans., 90, 3391, 10.1039/FT9949003391
Brunauer S., 1938, J. Am. Chem. Soc., 60, 19, 10.1021/ja01269a023
Rubino R. S., 1999, J. Power Sources, 81, 373, 10.1016/S0378-7753(99)00217-7
Yukselen Y., 2006, J. Geotech. Geoenviron. Eng., 132, 931, 10.1061/(ASCE)1090-0241(2006)132:7(931)
Pakhovchishin S. V., 1991, Colloid Journal of the USSR, 53, 245
Sagara T., 1993, Langmuir, 9, 838, 10.1021/la00027a037
Li J.-L., 2006, Phys. Rev. Lett., 96, 176101, 10.1103/PhysRevLett.96.176101
Rodriguez A. M., 1984, Thermochim. Acta, 78, 113, 10.1016/0040-6031(84)87138-5
Span R., 1996, J. Phys. Chem. Ref. Data, 25, 1509, 10.1063/1.555991
Parsegian, V. A. van der Waals Forces: A Handbook for Biologists,Chemists, Engineers, and Physicists; Cambridge University Press: New York, 2005.
Butland A. T. D., 1973, J. Nucl. Mater., 49, 45, 10.1016/0022-3115(73)90060-3
Typical Hamaker coefficients of carbon-based insulators are similar, i.e.AHamdoes not vary much for different hydrocarbons. Therefore, we can use a typical dielectric screening function of hydrocarbon in the evaluation of Hamaker coefficients in GO. We model the dielectric function of theB‘ sheets with the simple expression εB‘(ω) = 1 + 1/(1 − (ω/ωhc)2) where we take ωhc= 1.5 × 1016rad/s. Mahanty, J; Ninham, B. W.Dispersion Forces; Academic Press, New York, 1976.
Bach H. T., 2003, J. Vac. Sci. Technol., A, 21, 806, 10.1116/1.1569924