Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core

Joule - Tập 3 - Trang 1140-1151 - 2019
Jun Yuan1, Yunqiang Zhang1, Liuyang Zhou1,2, Guichuan Zhang3, Hin-Lap Yip3, Tsz-Ki Lau4, Xinhui Lu4, Can Zhu1,2, Hongjian Peng1, Paul A. Johnson5, Mario Leclerc5, Yong Cao3, Jacek Ulanski6, Yongfang Li2, Yingping Zou1
1College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
2Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
3Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
4Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, P.R. China
5Department of Chemistry, Université Laval, Quebec City, QC G1V 0A6, Canada
6Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland

Tài liệu tham khảo

Yu, 1995, Polymer photovoltaic cells - enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, 270, 1789, 10.1126/science.270.5243.1789 Halls, 1996, Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell, Appl. Phys. Lett., 68, 3120, 10.1063/1.115797 Thompson, 2008, Polymer-fullerene composite solar cells, Angew. Chem. Int. Ed., 47, 58, 10.1002/anie.200702506 Li, 2012, Polymer solar cells, Nat. Photonics, 6, 153, 10.1038/nphoton.2012.11 Li, 2008, Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility, Adv. Mater., 20, 2952, 10.1002/adma.200800606 Li, 2010, Polyphenylene-based materials for organic photovoltaics, Chem. Rev., 110, 6817, 10.1021/cr100052z Qian, 2018, Design rules for minimizing voltage losses in high-efficiency organic solar cells, Nat. Mater., 17, 703, 10.1038/s41563-018-0128-z Liu, 2014, Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells, Nat. Commun., 5, 5293, 10.1038/ncomms6293 Huang, 2014, Bulk heterojunction solar cells: morphology and performance relationships, Chem. Rev., 114, 7006, 10.1021/cr400353v Hu, 2017, Design of donor polymers with strong temperature-dependent aggregation property for efficient organic photovoltaics, Acc. Chem. Res., 50, 2519, 10.1021/acs.accounts.7b00293 Zhao, 2017, Molecular optimization enables over 13% efficiency in organic solar cells, J. Am. Chem. Soc., 139, 7148, 10.1021/jacs.7b02677 Lin, 2015, An electron acceptor challenging fullerenes for efficient polymer solar cells, Adv. Mater., 27, 1170, 10.1002/adma.201404317 Luo, 2018, Fine-tuning of molecular packing and energy level through methyl substitution enabling excellent small molecule acceptors for nonfullerene polymer solar cells with efficiency up to 12.54, Adv. Mater., 30, 1706124, 10.1002/adma.201706124 Xu, 2017, Highly efficient ternary-blend polymer solar cells enabled by a nonfullerene acceptor and two polymer donors with a broad composition tolerance, Adv. Mater., 29, 1704271, 10.1002/adma.201704271 Zhou, 2014, High performance all-polymer solar cell via polymer side-chain engineering, Adv. Mater., 26, 3767, 10.1002/adma.201306242 Baran, 2017, Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells, Nat. Mater., 16, 363, 10.1038/nmat4797 Li, 2017, High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells, J. Am. Chem. Soc., 139, 17114, 10.1021/jacs.7b11278 Meng, 2016, High-performance solution-processed non-fullerene organic solar cells based on selenophene-containing perylene bisimide acceptor, J. Am. Chem. Soc., 138, 375, 10.1021/jacs.5b11149 Wu, 2016, Covalently bound clusters of alpha-substituted PDI-rival electron acceptors to fullerene for organic solar cells, J. Am. Chem. Soc., 138, 7248, 10.1021/jacs.6b03562 Yao, 2018, Dithienopicenocarbazole-based acceptors for efficient organic solar cells with optoelectronic response over 1000 nm and an extremely low energy loss, J. Am. Chem. Soc., 140, 2054, 10.1021/jacs.7b13239 Ma, 2017, Ladder-type dithienonaphthalene-based small-molecule acceptors for efficient nonfullerene organic solar cells, Chem. Mater., 29, 7942, 10.1021/acs.chemmater.7b02887 Liu, 2017, Exploiting noncovalently conformational locking as a design strategy for high performance fused-ring electron acceptor used in polymer solar cells, J. Am. Chem. Soc., 139, 3356, 10.1021/jacs.7b00566 Xia, 2015, A spiro-bifluorene based 3D electron acceptor with dicyanovinylene substitution for solution-processed non-fullerene organic solar cells, J. Mater. Chem. A Mater. Energy Sustain., 3, 11086, 10.1039/C5TA00108K Jiang, 2018, Ternary nonfullerene polymer solar cells with 12.16% efficiency by introducing one acceptor with cascading energy level and complementary absorption, Adv. Mater., 30, 1703005, 10.1002/adma.201703005 Kan, 2018, Fine-tuning the energy levels of a nonfullerene small-molecule acceptor to achieve a high short-circuit current and a power conversion efficiency over 12% in organic solar cells, Adv. Mater., 30, 1704904, 10.1002/adma.201704904 Guo, 2014, Imide- and amide-functionalized polymer semiconductors, Chem. Rev., 114, 8943, 10.1021/cr500225d Cheng, 2018, Next-generation organic photovoltaics based on non-fullerene acceptors, Nat. Photonics, 12, 131, 10.1038/s41566-018-0104-9 Zhang, 2018, Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor, Adv. Mater., 30, e1800868, 10.1002/adma.201800868 Fei, 2018, An alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses, Adv. Mater., 30, 1705209, 10.1002/adma.201705209 Li, 2018, A High-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor, Adv. Mater., 30, e1707170, 10.1002/adma.201707170 Sun, 2018, Dithieno[3,2-b:2′,3′-d]pyrrol fused nonfullerene acceptors enabling over 13% efficiency for organic solar cells, Adv. Mater., 30, e1707150, 10.1002/adma.201707150 Zhou, 2018, High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors, Nat. Energy, 3, 952, 10.1038/s41560-018-0234-9 Wang, 2018, Effect of isomerization on high-performance nonfullerene electron acceptors, J. Am. Chem. Soc., 140, 9140, 10.1021/jacs.8b04027 Huang, 2018, Highly efficient organic solar cells based on S,N-heteroacene non-fullerene acceptors, Chem. Mater., 30, 5429, 10.1021/acs.chemmater.8b02276 Zhang, 2015, A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance, Adv. Mater., 27, 4655, 10.1002/adma.201502110 Rühle, 2016, Tabulated values of the Shockley–Queisser limit for single junction solar cells, Sol. Energy, 130, 139, 10.1016/j.solener.2016.02.015 Feng, 2017, Thieno[3,2-b]pyrrolo-fused pentacyclic benzotriazole-based acceptor for efficient organic photovoltaics, ACS Appl. Mater. Interfaces, 9, 31985, 10.1021/acsami.7b10995 Wu, 2015, Donor-acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells, Chem. Soc. Rev., 44, 1113, 10.1039/C4CS00250D Hu, 2015, Terthiophene-based D-A polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells, J. Am. Chem. Soc., 137, 14149, 10.1021/jacs.5b08556 Park, 2009, Bulk heterojunction solar cells with internal quantum efficiency approaching 100%, Nat. Photonics, 3, 297, 10.1038/nphoton.2009.69 Chen, 2014, Low band-gap conjugated polymers with strong interchain aggregation and very high hole mobility towards highly efficient thick-film polymer solar cells, Adv. Mater., 26, 2586, 10.1002/adma.201305092 Lei, 2014, “Conformation locked” strong electron-deficient poly(p-phenylene vinylene) derivatives for ambient-stable n-type field-effect transistors: synthesis, properties, and effects of fluorine substitution position, J. Am. Chem. Soc., 136, 2135, 10.1021/ja412533d Uddin, 2015, Interplay of intramolecular noncovalent coulomb interactions for semicrystalline photovoltaic polymers, Chem. Mater., 27, 5997, 10.1021/acs.chemmater.5b02251 Huang, 2017, Organic and polymeric semiconductors enhanced by noncovalent conformational locks, Chem. Rev., 117, 10291, 10.1021/acs.chemrev.7b00084 Zhang, 2018, Conformation locking on fused-ring electron acceptor for high-performance nonfullerene organic solar cells, Adv. Funct. Mater., 28, 1705095, 10.1002/adfm.201705095 Chai, 2008, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections, Phys. Chem. Chem. Phys., 10, 6615, 10.1039/b810189b Frisch, 2016 Long, 2016, New insights into the correlation between morphology, excited state dynamics, and device performance of small molecule organic solar cells, Adv. Energy Mater., 6, 1600961, 10.1002/aenm.201600961 Yuan, 2016, Tetrafluoroquinoxaline based polymers for non-fullerene polymer solar cells with efficiency over 9%, Nano Energy, 30, 312, 10.1016/j.nanoen.2016.10.008 Liu, 2016, Fast charge separation in a non-fullerene organic solar cell with a small driving force, Nat. Energy, 1, 16089, 10.1038/nenergy.2016.89 Gong, 2011, Bulk heterojunction solar cells with large open-circuit voltage: electron transfer with small donor-acceptor energy offset, Adv. Mater., 23, 2272, 10.1002/adma.201003768 Rao, 2013, The role of spin in the kinetic control of recombination in organic photovoltaics, Nature, 500, 435, 10.1038/nature12339 Mai, 2018, Hidden structure ordering along backbone of fused-ring electron acceptors enhanced by ternary bulk heterojunction, Adv. Mater., 30, e1802888, 10.1002/adma.201802888