Single Fe atoms confined in two-dimensional MoS2 for sulfite activation: A biomimetic approach towards efficient radical generation
Tài liệu tham khảo
Wyse, 2019, The role of oxidative stress and bioenergetic dysfunction in sulfite oxidase deficiency: insights from animal models, Neurotox. Res., 35, 484, 10.1007/s12640-018-9986-z
Zhou, 2018, Transition metal catalyzed sulfite auto-oxidation systems for oxidative decontamination in waters: a state-of-the-art minireview, Chem. Eng. J., 346, 726, 10.1016/j.cej.2018.04.016
Chen, 2017, Efficient bacterial inactivation by transition metal catalyzed auto-oxidation of sulfite, Environ. Sci. Technol., 51, 12663, 10.1021/acs.est.7b03705
Chen, 2019, Radical generation via sulfite activation on NiFe2O4 surface for estriol removal: performance and mechanistic studies, Chem. Eng. J., 368, 495, 10.1016/j.cej.2019.02.196
Zhang, 2018, Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis, Adv. Energy Mater., 8
Li, 2018, Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis, J. Am. Chem. Soc., 140, 12469, 10.1021/jacs.8b05992
Yin, 2019, Boosting Fenton-like reactions via single atom fe catalysis, Environ. Sci. Technol., 53, 11391, 10.1021/acs.est.9b03342
Guo, 2019, Single-atom Mn–N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution, J. Am. Chem. Soc., 141, 12005, 10.1021/jacs.9b04569
Garrett, 1998, Human sulfite oxidase R160Q: identification of the mutation in a sulfite oxidase-deficient patient and expression and characterization of the mutant enzyme, Proc. Natl. Acad. Sci. U. S. A., 95, 6394, 10.1073/pnas.95.11.6394
Hille, 2014, The mononuclear molybdenum enzymes, Chem. Rev., 114, 3963, 10.1021/cr400443z
Wang, 2019, Catalysis with two-dimensional materials confining single atoms: concept, design, and applications, Chem. Rev., 119, 1806, 10.1021/acs.chemrev.8b00501
Deng, 2015, Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping, Energy Environ. Sci., 8, 1594, 10.1039/C5EE00751H
He, 2018, High-metallic-phase-concentration Mo1–xWxS2 nanosheets with expanded interlayers as efficient electrocatalysts, Nano Res., 11, 1687, 10.1007/s12274-017-1786-x
Shi, 2017, Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction, J. Am. Chem. Soc., 139, 15479, 10.1021/jacs.7b08881
Zhang, 2018, Semimetallic vanadium molybdenum sulfide for high-performance battery electrodes, J. Mater. Chem. A, 6, 9411, 10.1039/C8TA00995C
Fan, 2019, In situ photoelectrochemical activation of sulfite by MoS2 photoanode for enhanced removal of ammonium nitrogen from wastewater, Appl. Catal. B Environ., 244, 396, 10.1016/j.apcatb.2018.11.061
Wang, 2015, Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution, Nano Res., 8, 566, 10.1007/s12274-014-0677-7
Li, 2018, Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation, Nat. Nanotechnol., 13, 411, 10.1038/s41565-018-0089-z
Xiao, 2017, Dual-functional N dopants in edges and basal plane of MoS2 nanosheets toward efficient and durable hydrogen evolution, Adv. Energy Mater., 7, 10.1002/aenm.201602086
Miao, 2015, Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: a flexible electrode for efficient hydrogen generation in neutral electrolyte, Sci. Adv., 1, 10.1126/sciadv.1500259
Zhang, 2016, Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production, Energy Environ. Sci., 2789, 10.1039/C6EE01786J
Chen, 2019, Degradation of propranolol by UV-activated persulfate oxidation: reaction kinetics, mechanisms, reactive sites, transformation pathways and Gaussian calculation, Sci. Total Environ., 690, 878, 10.1016/j.scitotenv.2019.07.034
Chang, 2011, L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries, ACS Nano, 5, 4720, 10.1021/nn200659w
Kresse, 1994, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium, Phys. Rev. B, 49, 14251, 10.1103/PhysRevB.49.14251
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188
Grimme, 2010, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 132, 10.1063/1.3382344
Min, 2017, Fe-FeS2 adsorbent prepared with iron powder and pyrite by facile ball milling and its application for arsenic removal, Water Sci. Technol., 76, 192, 10.2166/wst.2017.204
Zolgharnein, 2018, Multivariate optimization and characterization of simultaneous removal of binary mixture of Cu(II) and Pb(II) using Fe3O4@MoS2 nanoparticles, J. Chemom., 32, 10.1002/cem.3043
Nagaraju, 2007, Hydrothermal synthesis of amorphous MoS2 nanofiber bundles via acidification of ammonium heptamolybdate tetrahydrate, Nanoscale Res. Lett., 2, 461, 10.1007/s11671-007-9087-z
Vattikuti, 2015, Synthesis and characterization of molybdenum disulfide nanoflowers and nanosheets: nanotribology, J. Nanomater., 11
Neta, 1985, One-electron redox reactions involving sulfite ions and aromatic amines, J. Phys. Chem., 89, 1783, 10.1021/j100255a049
Hayon, 1972, Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2−, SO3−, SO4−, and SO5− radicals, J. Am. Chem. Soc., 94, 47, 10.1021/ja00756a009
Reschke, 2013, Effect of exchange of the cysteine molybdenum ligand with selenocysteine on the structure and function of the active site in human sulfite oxidase, Biochemistry, 52, 8295, 10.1021/bi4008512
George, 1989, Structure of the active site of sulfite oxidase. X-ray absorption spectroscopy of the Mo(IV), Mo(V), and Mo(VI) oxidation states, Biochemistry, 28, 5075, 10.1021/bi00438a026
Wander, 2007, Structure and charge hopping dynamics in green rust, J. Phys. Chem. C, 111, 11414, 10.1021/jp072762n
Codd, 2002, Pulsed ELDOR spectroscopy of the Mo(V)/Fe(III) state of sulfite oxidase prepared by one-electron reduction with Ti(III) citrate, J. Biol. Inorg. Chem., 7, 338, 10.1007/s00775-001-0303-5
Ganiyu, 2017, Use of sub-stoichiometric titanium oxide as a ceramic electrode in anodic oxidation and electro-Fenton degradation of the beta-blocker propranolol: degradation kinetics and mineralization pathway, Electrochim. Acta, 242, 344, 10.1016/j.electacta.2017.05.047
Tang, 2009, A grid-based Bader analysis algorithm without lattice bias, J. Phys.-Condensed Matter, 21, 10.1088/0953-8984/21/8/084204
Zhang, 2000, Iron(II) oxidation by SO2/O2 in acidic media: part I. Kinetics and mechanism, Hydrometallurgy, 55, 229, 10.1016/S0304-386X(99)00082-1
Zhang, 2000, SO2/O2 as an oxidant in hydrometallurgy, Miner. Eng., 13, 1319, 10.1016/S0892-6875(00)00115-1