Single-Directional Properties of Quasi-Monotone Operators

Springer Science and Business Media LLC - Tập 21 - Trang 617-626 - 2013
Didier Aussel1, Marián Fabian2
1Lab. PROMES, CNRS UPR 8521, University of Perpignan, Perpignan, France
2Mathematical Institute of Czech Academy of Sciencs, Praha 1, Czech Republic

Tóm tắt

A large supply of quasi-monotone multivalued mappings with values in a weak* fragmentable dual Banach space is shown to be generically single-directional. This is of some interest in analysis of quasi-convex functions. The paper extends/strengthens some results of a recent paper by Aussel and Eberhard (Math Program 30, 2012).

Tài liệu tham khảo

Aussel, D., Corvellec, J.N., Lassonde, M.: Subdifferential characterization of quasiconvexity and convexity. J. Convex Anal. 1, 195–201 (1994) Aussel, D., Corvellec, J.N. Lassonde, M.: Mean value property and subdifferential criteria for lower semicontinuous functions. Trans. Am. Math. Soc. 347, 4147–4161 (1995) Aussel, D., Cotrina, J.: Quasimonotone quasivariational inequalities: existence results and applications. J. Optim. Theory Appl. 158(3), 637–652 (2013) Aussel, D., Eberhard, A.: Maximal quasimonotonicity and dense single-directional properties of quasimonotone operators. Math. Program. 139(1–2), 27–54 (2013) Aussel, D., Hadjisavvas, N.: Adjusted sublevel sets, normal operator and quasiconvex programming. SIAM J. Optim. 16, 358–367 (2005) Aussel, D., Hadjisavvas, N., Garcia, Y.: Single-directional property of multivalued maps and variational systems. SIAM J. Optim. 20(3), 1274–1285 (2009) Aussel, D., Ye, J.: Quasiconvex programming with starshaped constraint region and application to quasiconvex MPEC. Optimization 55, 433–457 (2006) Borde, J., Crouzeix, J.P.: Continuity properties of the normal cone to the level sets of a quasiconvex function. J. Optim. Theory Appl. 66, 415–429 (1990) Fabian, M.J.: Gâteaux Differentiability of Convex Functions and Topology—Weak Asplund Spaces. Wiley, New York (1997) Kalenda, O.: Stegall compact spaces which are not fragmentable. Topol. Appl. 96, 121–132 (1999) Karamardian, S., Schaible, S.: Seven kinds of monotone maps. J. Optim. Theory Appl. 66, 37–46 (1990) Kenderov, P.S.: Monotone operators in Asplund spaces. C. R. Acad. Bulg. Sci. 30, 963–964 (1977) Kenderov, P.S., Moors, W.B., Sciffer, S.: A weak Asplund space whose dual space is not fragmentable. Proc. Am. Math. Soc. 129, 3741–3747 (2001) Kuratowski, K.: Topology I. Academic, New York (1966) Lassonde, M.: Asplund spaces, Stegall variational principle and the RNP. Set-Valued Var. Anal. 17, 183–193 (2009) Phelps, R.R.: Convex functions, monotone operators, and differentiability, 2nd edn. In: Lecture Notes in Math, vol. 1364. Springer-Verlag, Berlin (1993)