Single Cell Approaches to Understand the Earliest Steps in Heart Development

Current Cardiology Reports - Tập 24 - Trang 611-621 - 2022
Fabienne Lescroart1, Stéphane Zaffran1
1Aix-Marseille Univ, INSERM, MMG, Marseille, France

Tóm tắt

Cardiac progenitors are the building blocks of the heart. Our knowledge, on how these progenitors build the heart, has considerably increased over the last two decades with the development of single cell approaches. We discuss the lessons learnt from clonal analyses and from single cell sequencing technologies on the understanding of the earliest steps of cardiac specification and lineage segregation. While experiments were initially performed at the population level, the development of approaches to investigate heart development at the single cell resolution has clearly demonstrated that cardiac progenitors are highly heterogeneous, with different progenitors contributing to different cardiac regions and different cardiac cell types. Some critical transcriptional determinants have also been identified for cardiac progenitor specification. Single cell approaches have finally provided insights into the spatio-temporal specification of unipotent and multipotent cardiac progenitors and provided a framework for investigating congenital heart defects.

Tài liệu tham khảo

Poelmann RE, Gittenberger-de Groot AC. Cardiac development. Sci World J. 2008;8:855–8. https://doi.org/10.1100/tsw.2008.102. Saga Y, Miyagawa-Tomita S, Tagaki A, Kitajima S, Miyazaki J, Inoue T. MesP1 function on heart tube formation. Development. 1999;126:11. Zaffran S, Kelly RG, Meilhac SM, Buckingham ME, Brown NA. Right ventricular myocardium derives from the anterior heart field. Circ Res. 2004;8. Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 2005;6(11):826–35. https://doi.org/10.1038/nrg1710. Rochais F, Mesbah K, Kelly RG. Signaling pathways controlling second heart field development. Circ Res. 2009;104(8):933–42. https://doi.org/10.1161/CIRCRESAHA.109.194464. Zaffran S, Kelly RG. New developments in the second heart field. Differentiation. 2012;84(1):17–24. https://doi.org/10.1016/j.diff.2012.03.003. Dyer LA, Kirby ML. The role of secondary heart field in cardiac development. Dev Biol. 2009;336(2):137–44. https://doi.org/10.1016/j.ydbio.2009.10.009. Franco D, Meilhac SM, Christoffels VM, Kispert A, Buckingham M, Kelly RG. Left and right ventricular contributions to the formation of the interventricular septum in the mouse heart. Dev Biol. 2006;294(2):366–75. https://doi.org/10.1016/j.ydbio.2006.02.045. Takeuchi JK, et al. Tbx5 specifies the left/right ventricles and ventricular septum position during cardiogenesis. Development. 2003;130(24):5953–64. https://doi.org/10.1242/dev.00797. Männer J. The development of pericardial villi in the chick embryo. Anat Embryol (Berl). 1992;186(4):379–85. https://doi.org/10.1007/BF00185988. •• Meilhac SM, Esner M, Kelly RG, Nicolas J-F, Buckingham ME. The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell. 2004;6(5):685–98. https://doi.org/10.1016/S1534-5807(04)00133-9. The first clonal analysis of CPCs revealed the existence of two myocardial cell lineages. Cai C-L, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003;5(6):877–89. https://doi.org/10.1016/S1534-5807(03)00363-0. Lescroart F, Hamou W, Francou A, Théveniau-Ruissy M, Kelly RG, Buckingham M. Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium. Proc Natl Acad Sci USA. 2015;112(5):1446–51. https://doi.org/10.1073/pnas.1424538112. Lescroart F, Kelly RG, Le Garrec J-F, Nicolas J-F, Meilhac SM, Buckingham M. Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo. Development. 2010;137(19):3269–79. https://doi.org/10.1242/dev.050674. Buckingham ME, Meilhac SM. Tracing cells for tracking cell lineage and clonal behavior. Dev Cell. 2011;21(3):394–409. https://doi.org/10.1016/j.devcel.2011.07.019. Devine WP, Wythe JD, George M, Koshiba-Takeuchi K, Bruneau BG. Early patterning and specification of cardiac progenitors in gastrulating mesoderm. eLife. 2014;3:e03848. https://doi.org/10.7554/eLife.03848. Liang X, et al. HCN4 dynamically marks the first heart field and conduction system precursors. Circ Res. 2013;113(4):399–407. https://doi.org/10.1161/CIRCRESAHA.113.301588. •• Lescroart F, et al. Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat Cell Biol. 2014;16(9):829–40. https://doi.org/10.1038/ncb3024. Clonal analysis of Mesp1+ CPCs revealed early regional and lineage contributions. Ema M, Takahashi S, Rossant J. Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors. Blood. 2006;107(1):111–7. https://doi.org/10.1182/blood-2005-05-1970. Motoike T, Markham DW, Rossant J, Sato TN. Evidence for novel fate of Flk1+ progenitor: Contribution to muscle lineage. Genesis. 2003;35(3):153–9. https://doi.org/10.1002/gene.10175. Bondue A, et al. Defining the earliest step of cardiovascular progenitor specification during embryonic stem cell differentiation. J Cell Biol. 2011;192(5):751–65. https://doi.org/10.1083/jcb.201007063. Den Hartogh SC, et al. Dual reporter MESP1mCherry/w-NKX2-5eGFP/w hESCs enable studying early human cardiac differentiation. Stemm Cells. 2015;33(1):56–67. https://doi.org/10.1002/stem.1842. Kattman SJ, Huber TL, Keller GM. Multipotent Flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell. 2006;11(5):723–32. https://doi.org/10.1016/j.devcel.2006.10.002. Wu SM, et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell. 2006;127(6):1137–50. https://doi.org/10.1016/j.cell.2006.10.028. Chan SS-K, et al. Development of bipotent cardiac/skeletal myogenic progenitors from MESP1+ mesoderm. Stem Cell Rep. 2016;6(1):26–34. https://doi.org/10.1016/j.stemcr.2015.12.003. •• Zhang Q, et al. Unveiling complexity and multipotentiality of early heart fields. Circ Res. 2021;129(4):474–87. https://doi.org/10.1161/CIRCRESAHA.121.318943. scRNAseq and clonal analysis of early CPCs revealed the contribution of a Hand1+ CPCs to CMs of the LV and AVCs as well as to the epicardium. Red-Horse K, Ueno H, Weissman IL, Krasnow MA. Coronary arteries form by developmental reprogramming of venous cells. Nature. 2010;464(7288):549–53. https://doi.org/10.1038/nature08873. • Lioux G, et al. A second heart field-derived vasculogenic niche contributes to cardiac lymphatics. Dev Cell. 2020;52(3):350-363.e6. https://doi.org/10.1016/j.devcel.2019.12.006. Unbiased clonal analysis revealed additional contribution from SHF CPCs to cardiac lymphatics. Miquerol L, et al. Resolving cell lineage contributions to the ventricular conduction system with a Cx40-GFP allele: A dual contribution of the first and second heart fields. Dev Dyn. 2013;242(6):665–77. https://doi.org/10.1002/dvdy.23964. Choquet C, Marcadet L, Beyer S, Kelly RG, Miquerol L. Segregation of central ventricular conduction system lineages in early SMA+ cardiomyocytes occurs prior to heart tube formation. J Cardiovasc Dev Dis. 2016;3(1):Art. no. 1. https://doi.org/10.3390/jcdd3010002. Choquet C, Kelly RG, Miquerol L. Nkx2-5 defines distinct scaffold and recruitment phases during formation of the murine cardiac Purkinje fiber network. Nat Commun. 2020;11(1):5300. https://doi.org/10.1038/s41467-020-19150-9. Lazic S, Scott IC. Mef2cb regulates late myocardial cell addition from a second heart field-like population of progenitors in zebrafish. Dev Biol. 2011;354(1):123–33. https://doi.org/10.1016/j.ydbio.2011.03.028. Zhou Y, et al. Latent TGF-β binding protein 3 identifies a second heart field in zebrafish. Nature. 2011;474(7353):645–8. https://doi.org/10.1038/nature10094. Chabab S, Lescroart F, Rulands S, Mathiah N, Simons BD, Blanpain C. Uncovering the number and clonal dynamics of Mesp1 progenitors during heart morphogenesis. Cell Rep. 2016;14(1):1–10. https://doi.org/10.1016/j.celrep.2015.12.013. Lescroart F, Mohun T, Meilhac SM, Bennett M, Buckingham M. Lineage tree for the venous pole of the heart: clonal analysis clarifies controversial genealogy based on genetic tracing. Circ Res. 2012;111(10):1313–22. https://doi.org/10.1161/CIRCRESAHA.112.271064. Meilhac SM, Kelly RG, Rocancourt D, Eloy-Trinquet S, Nicolas J-F, Buckingham ME. A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart. Development. 2003;130(16):3877–89. https://doi.org/10.1242/dev.00580. Meilhac SM, Esner M, Kerszberg M, Moss JE, Buckingham ME. Oriented clonal cell growth in the developing mouse myocardium underlies cardiac morphogenesis. J Cell Biol. 2004;164(1):97–109. https://doi.org/10.1083/jcb.200309160. •• Ivanovitch K, Temiño S, Torres M. Live imaging of heart tube development in mouse reveals alternating phases of cardiac differentiation and morphogenesis. eLife. 2017;6:e30668. https://doi.org/10.7554/eLife.30668. Single cell tracking of CPCs in real-time with live imaging revealed different phases of CPCs differentiation. Potter SS. Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol. 2018;14(8):479–92. https://doi.org/10.1038/s41581-018-0021-7. Wagner DE, Klein AM. Lineage tracing meets single-cell omics: opportunities and challenges. Nat Rev Genet. 2020;21(7):410–27. https://doi.org/10.1038/s41576-020-0223-2. Hou R, Denisenko E, Ong HT, Ramilowski JA, Forrest ARR. Predicting cell-to-cell communication networks using NATMI. Nat Commun. 2020;11(1):5011. https://doi.org/10.1038/s41467-020-18873-z. Ramilowski JA, et al. A draft network of ligand–receptor-mediated multicellular signalling in human. Nat Commun. 2015;6(1):7866. https://doi.org/10.1038/ncomms8866. Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014;9(1):171–81. https://doi.org/10.1038/nprot.2014.006. Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The technology and biology of single-cell RNA sequencing. Mol Cell. 2015;58(4):610–20. https://doi.org/10.1016/j.molcel.2015.04.005. Kiselev VY, Andrews TS, Hemberg M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet. 2019;20(5):273–82. https://doi.org/10.1038/s41576-018-0088-9. • Li G, Plonowska K, Kuppusamy R, Sturzu A, Wu SM. Identification of cardiovascular lineage descendants at single-cell resolution. Development, 2015;dev.116897. https://doi.org/10.1242/dev.116897. One of the first single-cell transcriptomic analysis of CPCs. Li G, et al. Transcriptomic profiling maps anatomically patterned subpopulations among single embryonic cardiac cells. Dev Cell. 2016;39(4):491–507. https://doi.org/10.1016/j.devcel.2016.10.014. DeLaughter DM, et al. Single-cell resolution of temporal gene expression during heart development. Dev Cell. 2016;39(4):480–90. https://doi.org/10.1016/j.devcel.2016.10.001. Goodyer WR, et al. Transcriptomic profiling of the developing cardiac conduction system at single-cell resolution. Circ Res. 2019;125(4):379–97. https://doi.org/10.1161/CIRCRESAHA.118.314578. Pijuan-Sala B, et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature. 2019;566(7745):490–5. https://doi.org/10.1038/s41586-019-0933-9. Su T, et al. Single-cell analysis of early progenitor cells that build coronary arteries. Nature. 2018;559(7714):356–62. https://doi.org/10.1038/s41586-018-0288-7. Cui Y, et al. Single-cell transcriptome analysis maps the developmental track of the human heart. Cell Rep. 2019;26(7):1934-1950.e5. https://doi.org/10.1016/j.celrep.2019.01.079. Wang W, et al. A single-cell transcriptional roadmap for cardiopharyngeal fate diversification. Nat Cell Biol. 2019;21(6):674–86. https://doi.org/10.1038/s41556-019-0336-z. •• Lescroart F, et al. Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq. Science. 2018;359(6380):1177–81. https://doi.org/10.1126/science.aao4174. scRNAseq of early CPCs at the time of gastrulation revealed CPCs molecular heterogeneity and early lineage segregation. •• Ivanovitch K, et al. Ventricular, atrial, and outflow tract heart progenitors arise from spatially and molecularly distinct regions of the primitive streak. PLoS Biol. 2021;19(5): e3001200. https://doi.org/10.1371/journal.pbio.3001200. Elegant combination of lineage tracing experiments with scRNAseq of early CPCs at gastrulation. •• de Soysa TY, et al. Single-cell analysis of cardiogenesis reveals basis for organ-level developmental defects. Nature. 2019;572(7767):120–4. https://doi.org/10.1038/s41586-019-1414-x. scRNAseq analysis of CPCs and investigation of the role of Hand2 as an OFT specifier. •• Tyser RCV, et al. Characterization of a common progenitor pool of the epicardium and myocardium. Science. 2021;371(6533):eabb2986. https://doi.org/10.1126/science.abb2986. scRNAseq and lineage tracing of early CPCs revealed the contribution of a newly identified population, the JCF, to the LV and epicardium. • Jia G, et al. Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement. Nat Commun. 2018;9(1):4877. https://doi.org/10.1038/s41467-018-07307-6. scRNAseq and scATACseq of early CPCs. Xiong H, et al. Single-cell transcriptomics reveals chemotaxis-mediated intraorgan crosstalk during cardiogenesis. Circ Res. 2019;125(4):398–410. https://doi.org/10.1161/CIRCRESAHA.119.315243. Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet. 1997;16(2):154–60. https://doi.org/10.1038/ng0697-154. Sahara M, et al. Population and single-cell analysis of human cardiogenesis reveals unique LGR5 ventricular progenitors in embryonic outflow tract. Dev Cell. 2019;48(4):475-490.e7. https://doi.org/10.1016/j.devcel.2019.01.005. Mononen MM, Leung CY, Xu J, Chien KR. Trajectory mapping of human embryonic stem cell cardiogenesis reveals lineage branch points and an ISL1 progenitor-derived cardiac fibroblast lineage. Stem Cells. 2020;38(10):1267–78. https://doi.org/10.1002/stem.3236. Friedman CE, et al. Single-cell transcriptomic analysis of cardiac differentiation from human PSCs reveals HOPX-dependent cardiomyocyte maturation. Cell Stem Cell. 2018;23(4):586-598.e8. https://doi.org/10.1016/j.stem.2018.09.009. Li G, et al. Single cell expression analysis reveals anatomical and cell cycle-dependent transcriptional shifts during heart development. Development, 2019;dev.173476. https://doi.org/10.1242/dev.173476. Asp M, Bergenstråhle J, Lundeberg J. Spatially resolved transcriptomes—next generation tools for tissue exploration. BioEssays. 2020;42(10):1900221. https://doi.org/10.1002/bies.201900221. • Asp M, et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell. 2019;179(7):1647-1660.e19. https://doi.org/10.1016/j.cell.2019.11.025. First report of application of spatial transcriptomic for heart development. Stefanovic S. Hox-dependent coordination of mouse cardiac progenitor cell patterning and differentiation. eLife. 2020;9:e55124. https://doi.org/10.7554/eLife.55124. Weinreb C, Wolock S, Tusi BK, Socolovsky M, Klein AM. Fundamental limits on dynamic inference from single-cell snapshots. Proc Natl Acad Sci USA. 2018;115(10):E2467–76. https://doi.org/10.1073/pnas.1714723115. Weinreb C, Rodriguez-Fraticelli A, Camargo FD, Klein AM. Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science. 2020;367(6479):eaaw3381. https://doi.org/10.1126/science.aaw3381. Bowling S, et al. An engineered CRISPR-Cas9 mouse line for simultaneous readout of Lineage histories and gene expression profiles in single cells. Cell. 2020;181(6):1410-1422.e27. https://doi.org/10.1016/j.cell.2020.04.048. Pei W, et al. Resolving fates and single-cell transcriptomes of hematopoietic stem cell clones by PolyloxExpress barcoding. Cell Stem Cell. 2020;27(3):383-395.e8. https://doi.org/10.1016/j.stem.2020.07.018. Kucinski I, Gottgens B. Advancing stem cell research through multimodal single-cell analysis. Cold Spring Harb Perspect Biol. 2020;12(7): a035725. https://doi.org/10.1101/cshperspect.a035725. Ruan H, et al. Single-cell reconstruction of differentiation trajectory reveals a critical role of ETS1 in human cardiac lineage commitment. BMC Biol. 2019;17(1):89. https://doi.org/10.1186/s12915-019-0709-6. Churko JM, et al. Defining human cardiac transcription hierarchies using integrated single-cell heterogeneity analysis. Nat Commun. 2018;9(1):4906. https://doi.org/10.1038/s41467-018-0733-4.