Hát của Neoconocephalus robustus như một ví dụ về hỗn loạn xác định ở côn trùng

Springer Science and Business Media LLC - Tập 32 - Trang 797-804 - 2007
Tina P. Benko1, Matjaž Perc2
1Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
2Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia

Tóm tắt

Chúng tôi sử dụng các phương pháp phân tích chuỗi thời gian phi tuyến để phân tích động học của bộ phận phát âm thanh của côn trùng Neoconocephalus robustus. Chúng tôi nắm bắt động học bằng cách phân tích một bản ghi âm của hoạt động hát. Đầu tiên, chúng tôi tái dựng không gian pha từ bản ghi âm và kiểm tra nó với tính xác định và tính dừng. Sau khi xác nhận tính xác định và tính dừng, chúng tôi cho thấy rằng hệ số Lyapunov tối đa của chuỗi là dương, điều này là một chỉ số mạnh cho hành vi hỗn loạn của hệ thống. Chúng tôi thảo luận rằng các phương pháp phân tích chuỗi thời gian phi tuyến có thể mang lại những hiểu biết hữu ích và thúc đẩy việc hiểu biết về giao tiếp âm thanh trong giữa các loài côn trùng.

Từ khóa

#Neoconocephalus robustus #phân tích chuỗi thời gian phi tuyến #hỗn loạn xác định #giao tiếp âm thanh #côn trùng

Tài liệu tham khảo

Abarbanel H D I 1996 Analysis of observed chaotic data (New York: Springer) Behrman A 1999 Global and local dimensions of vocal dynamics; J. Acoust. Soc. Am. 105 432–443 Fee M S, Shraiman B, Pesaran B and Mitra P P 1998 The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird; Nature 395 67–71 Fitch W T, Neubauer J and Herzel H 2002 Calls out of chaos: the adaptive significance of nonlinear phenomena in mammalian vocal communication; Anim. Behav. 63 407–418 Fletcher N H 2000 A class of chaotic bird calls?; J. Acoust. Soc. Am. 108 821–826 Fraser A M and Swinney H L 1986 Independent coordinates for strange attractors from mutual information; Phys. Rev. A 33 1134–1140 Hauser M D 1993 The evolution of nonhuman primate vocalizations: effects of phylogeny, body weight, and social context; Am. Nat. 142 528–542 Heath J E and Josephson R K 1970 Body temperature and singing in the katydid, Neoconocephalus robustus (Orthoptera, Tettigoniidae); Biol. Bull. 138 272–285 Hegger R and Kantz H 1999 Practical implementation of nonlinear time series methods: the TISEAN package; Chaos 9 413–440 Hegger R, Kantz H and Schreiber T 1999 The official web page of the TISEAN project is: www.mpipks-dresden.mpg.de/:_tisean Herzel H, Berry D, Titze I R and Saleh S 1994 Analysis of vocal disorders with methods from nonlinear dynamics; J. Speech Hear. Res. 37 1008–1019 Kantz H 1994 A robust method to estimate the maximal Lyapunov exponent of a time series; Phys. Lett. A 185 77–87 Kantz H and Schreiber T 1997 Nonlinear time series analysis (Cambridge: Cambridge University Press) Kaplan D T and Glass L 1992 Direct test for determinism in a time series; Phys. Rev. Lett. 68 427–430 Kaplan D T and Glass L 1995 Understanding nonlinear dynamics (New York: Springer) Kennel M B, Brown R and Abarbanel H D I 1992 Determining embedding dimension for phase space reconstruction using a geometrical construction; Phys. Rev. A 45 3403–3411 Kodba S, Perc M and Marhl M 2005 Detecting chaos from a time series; Eur. J. Phys. 26 205–215 Kumar A and Mullick S K 1996 Nonlinear dynamical analysis of speech; J. Acoust. Soc. Am. 100 615–629 Mende W, Herzel H and Wermke H 1990 Bifurcations and chaos in newborn infant cries; Phys. Lett. A 145 418–424 Narayanan S N and Alwan A A 1995 A nonlinear dynamical systems analysis of fricative consonants; J. Acoust. Soc. Am. 97 2511–2524 Ott E 1993 Chaos in dynamical systems (Cambridge: Cambridge University Press) Perc M 2005a The dynamics of human gait; Eur. J. Phys. 26 525–534 Perc M 2005b Nonlinear time series analysis of the human electrocardiogram; Eur. J. Phys. 26 757–768 Riede T, Herzel H, Mehwald D, Seidner W, Trumler E, Tembrock G and Böhme G 2000 Nonlinear phenomena and their anatomical basis in the natural howling of a female dog-wolf breed; J. Acoust. Soc. Am. 108 1435–1442 Riede T, Herzel H, Hammerschmidt K, Brunnberg L and Tembrock G 2001 The harmonic-to-noise-ratio applied to dog barks; J. Acoust. Soc. Am. 110 2191–2197 Riede T, Mitchell B R, Tokuda I and Owren M J 2005 Characterizing noise in nonhuman vocalizations: acoustic analysis and human perception of barks by coyotes and dogs; J. Acoust. Soc. Am. 118 514–522 Rosenstein M T, Collins J J and De Luca C J 1993 A practical method for calculating largest Lyapunov exponents from small data sets; Physica D 65 117–134 Salvino L W and Cawley R 1994 Smoothness implies determinism: a method to detect it in time series; Phys. Rev. Lett. 73 1091–1094 Sauer T, Yorke J A and Casdagli M 1991 Embedology; J. Stat. Phys. 65 579–616 Schreiber T 1997 Detecting and analyzing nonstationarity in a time series with nonlinear cross-predictions; Phys. Rev. Lett. 78 843–846 Schuster H G 1989 Deterministic chaos (Weinheim: VCH) Scudder S H 1862 Materials for a monograph of the North American Orthoptera, including a catalogue of the known New England species; J. Boston Soc. Nat. Hist. 7 409–480 Shaw R 1981 Strange attractors, chaotic behavior, and information flow; Z. Naturforsch. 36a 80–112 Sprott J C 2003 Chaos and time-series analysis (Oxford: Oxford University Press) Strogatz S H 1994 Nonlinear dynamics and chaos (Massachusetts: Addison-Wesley) Takens F 1981 Detecting strange attractors in turbulence; in Lecture notes in mathematics (eds) D A Rand and L S Young (Berlin: Springer-Verlag) pp 366–381 Titze I R, Baken R J and Herzel H 1993 Evidence of chaos in vocal fold vibration; in Vocal fold physiology: frontiers in basic science (ed) I R Titze (San Diego: Singular Publishing Group) pp 143–188 Walker T J, Whitesell J J and Alexander R D 1973 The robust conehead: two widespread sibling species; Ohio J. Sci. 73 321–330 Walker T J 1999 Web-version of handbook of crickets and katydids http://buzz.ifas.ufl.edu/ Wayland R, Bromley D, Pickett D and Passamante A 1993 Recognizing determinism in a time series; Phys. Rev. Lett. 70 580–582 Wilden I, Herzel H, Peters G and Tembrock G 1998 Subharmonics, biphonation, and deterministic chaos in mammal vocalization; Bioacoustics 9 171–196 Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Determining Lyapunov exponents from a time series; Physica D 16 285–317