Acid Sinapic làm giảm độc tính trên tim do Cisplatin gây ra bằng cách ức chế stress oxy hóa và viêm với điều chỉnh NF-kB trung gian GPX4

Cardiovascular Toxicology - Tập 23 - Trang 10-22 - 2022
Caner Yildirim1, Sibel Cangi2, Mustafa Orkmez3, Senay Gorucu Yilmaz4, Mehmet Akif Bozdayı3, Hatice Yamaner1, Sena Cevik1
1Department of Physiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
2Department of Pathology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
3Department of Medical Biochemistry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
4Department of Nutrition and Dietetics, Faculty of Health Sciences, Gaziantep University, Gaziantep, Turkey

Tóm tắt

Việc sử dụng cisplatin bị hạn chế nghiêm trọng bởi nguy cơ phát triển các biến chứng tim mạch. Acid sinapic có thể làm giảm tác dụng phụ của cisplatin. Các đặc tính chống oxy hóa, chống viêm và khả năng quét peroxynitrite của acid sinapic có thể cung cấp sự bảo vệ chống lại độc tính tim do cisplatin gây ra. Để gây độc tính ở chuột, cisplatin được tiêm trong thời gian 5 tuần. Điện tâm đồ động vật được thu thập sau khi độc tính của cisplatin đã có hiệu lực. Các mẫu máu và mô tim sau đó được thu hoạch từ các động vật gây mê. Kỹ thuật ELISA được sử dụng để đánh giá mức độ các cytokine tiền viêm và các chỉ số stress oxy hóa và nitros hóa trong mô tim và huyết thanh. PCR theo thời gian thực được sử dụng để phân tích sự biểu hiện của GPX4 và NF-κB trong mô tim. Hematoxylin-eosin và Masson’s trichrome cũng được sử dụng. Dữ liệu điện tâm đồ cho thấy sự gia tăng trong khoảng QRS và QT. Về mặt sinh hóa, cisplatin làm tăng mức độ oxy hóa, nitros hóa, và cytokine tiền viêm. Các động vật tiếp xúc với cisplatin có các phát hiện mô bệnh lý trong mô tim, theo kết quả đánh giá mô học. Acid sinapic đã làm giảm TNF-alpha, interleukin-6, malondialdehyde, và albumin được biến đổi thiếu máu cục bộ. Acid sinapic cũng giảm stress oxy hóa và nitros hóa. Hơn nữa, acid sinapic đã phục hồi QT và QRS kéo dài. Chuột được điều trị bằng cisplatin có hoạt động NF-κB cao hơn so với nhóm đối chứng. Hiệu ứng này đã được acid sinapic ức chế thành công. Về mặt mô học, các mô được điều trị bằng acid sinapic ít bị tổn thương hơn so với các mô được điều trị bằng cisplatin. Kết luận, các kết quả của chúng tôi cho thấy acid sinapic có tác dụng bảo vệ chống lại độc tính tim do cisplatin gây ra. Những hiệu ứng này có thể do sự biểu hiện quá mức của GPX4 và sự điều chỉnh giảm NF-KB, cũng như các đặc tính chống oxy hóa và chống viêm.

Từ khóa

#cisplatin #acid sinapic #độc tính tim #stress oxy hóa #cytokine tiền viêm #GPX4 #NF-κB

Tài liệu tham khảo

Rybak, L. P., Mukherjea, D., Jajoo, S., & Ramkumar, V. (2009). Cisplatin ototoxicity and protection: Clinical and experimental studies. Tohoku Journal of Experimental Medicine, 219, 177–186. Trendowski, M. R., El Charif, O., Dinh, P. C., Travis, L. B., & Dolan, M. E. (2019). Genetic and modifiable risk factors contributing to cisplatin-induced toxicities. Clinical Cancer Research, 25, 1147–1155. Brouwers, E. E., Huitema, A. D., Boogerd, W., Beijnen, J. H., & Schellens, J. H. (2009). Persistent neuropathy after treatment with cisplatin and oxaliplatin. Acta Oncologica, 48, 832–841. el El-Awady, S. E., Moustafa, Y. M., Abo-Elmatty, D. M., & Radwan, A. (2011). Cisplatin-induced cardiotoxicity: Mechanisms and cardioprotective strategies. European Journal of Pharmacology, 650, 335–341. Al-Majed, A. A., Sayed-Ahmed, M. M., Al-Yahya, A. A., Aleisa, A. M., Al-Rejaie, S. S., & Al-Shabanah, O. A. (2006). Propionyl-L-carnitine prevents the progression of cisplatin-induced cardiomyopathy in a carnitine-depleted rat model. Pharmacological Research, 53, 278–286. Xia, J., Hu, J. N., Zhang, R. B., Liu, W., Zhang, H., Wang, Z., Jiang, S., Wang, Y. P., & Li, W. (2022). Icariin exhibits protective effects on cisplatin-induced cardiotoxicity via ROS-mediated oxidative stress injury in vivo and in vitro. Phytomedicine. https://doi.org/10.1016/j.phymed.2022.154331 Qi, Y. J., Ying, Y., Zou, J., Fang, Q. L., Yuan, X. H., Cao, Y. Y., Cai, Y. F., & Fu, S. (2020). Kaempferol attenuated cisplatin-induced cardiac injury via inhibiting STING/NF-kappa B-mediated inflammation. American Journal of Translational Research, 12, 8007–8018. Qian, P., Yan, L. J., Li, Y. Q., Yang, H. T., Duan, H. Y., Wu, J. T., Fan, X. W., & Wang, S. L. (2018). Cyanidin ameliorates cisplatin-induced cardiotoxicity via inhibition of ROS-mediated apoptosis. Experimental and Therapeutic Medicine, 15, 1959–1965. Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., Patel, D. N., Bauer, A. J., Cantley, A. M., Yang, W. S., Morrison, B., & Stockwell, B. R. (2012). Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 149, 1060–1072. Pandi, A., & Kalappan, V. M. (2021). Pharmacological and therapeutic applications of Sinapic acid-an updated review. Molecular Biology Reports, 48, 3733–3745. Chen, C. Y. (2016). Sinapic acid and its derivatives as medicine in oxidative stress-induced diseases and aging 2016. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2016/3571614 Ansari, M. A. (2017). Sinapic acid modulates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. Biomedicine & Pharmacotherapy, 93, 646–653. Raish, M., Ahmad, A., Bin Jardan, Y. A., Shahid, M., Alkharfy, K. M., Ahad, A., Ansari, M. A., Abdelrahman, I. A., & Al-Jenoobi, F. I. (2022). Sinapic acid ameliorates cardiac dysfunction and cardiomyopathy by modulating NF-kappaB and Nrf2/HO-1 signaling pathways in streptozocin induced diabetic rats. Biomedicine & Pharmacotherapy., 145, 112412. Ansari, M. A., Raish, M., Ahmad, A., Ahmad, S. F., Mudassar, S., Mohsin, K., Shakeel, F., Korashy, H. M., & Bakheet, S. A. (2016). Sinapic acid mitigates gentamicin-induced nephrotoxicity and associated oxidative/nitrosative stress, apoptosis, and inflammation in rats. Life Sciences, 165, 1–8. Silambarasan, T., Manivannan, J., Priya, M. K., Suganya, N., Chatterjee, S., & Raja, B. (2015). Sinapic acid protects heart against ischemia/reperfusion injury and H9c2 cardiomyoblast cells against oxidative stress. Biochemical and Biophysical Research Communications, 456, 853–859. Singh, H. P., Singh, T. G., & Singh, R. (2020). Sinapic acid attenuates cisplatin-induced nephrotoxicity through peroxisome proliferator-activated receptor gamma agonism in rats. Journal of Pharmacy & Bioallied Sciences, 12, 146–154. Alaofi, A. L. (2020). Sinapic acid ameliorates the progression of streptozotocin (STZ)-induced diabetic nephropathy in RatsviaNRF2/HO-1 mediated pathways. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2020.01119 Herradon, E., Gonzalez, C., Uranga, J. A., Abalo, R., Martin, M. I., & Lopez-Miranda, V. (2017). Characterization of cardiovascular alterations induced by different chronic cisplatin treatments. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2017.00196 Raish, M., Ahmad, A., Bin Jardan, Y. A., Shahid, M., Alkharfy, K. M., Ahad, A., Ansari, M. A., Abdelrahman, I. A., & Al-Jenoobi, F. I. (2021). Sinapic acid ameliorates cardiac dysfunction and cardiomyopathy by modulating NF-kappaB and Nrf2/HO-1 signaling pathways in streptozocin induced diabetic rats. Biomedicine & Pharmacotherapy., 145, 112412. Saleh, D. O., Mansour, D. F., & Mostafa, R. E. (2020). Rosuvastatin and simvastatin attenuate cisplatin-induced cardiotoxicity via disruption of endoplasmic reticulum stress-mediated apoptotic death in rats: Targeting ER-Chaperone GRP78 and Calpain-1 pathways. Toxicology Reports, 7, 1178–1186. Dianat, M., Radmanesh, E., Badavi, M., Goudarzi, G., & Mard, S. A. (2016). The effects of PM10 on electrocardiogram parameters, blood pressure and oxidative stress in healthy rats: The protective effects of vanillic acid. Environmental Science and Pollution Research International, 23, 19551–19560. Erel, O. (2004). A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 37, 277–285. Demir, M., Yilmaz, B., Kalyoncu, S., Tuncer, M., Bozdag, Z., Ince, O., Bozdayi, M. A., Ulusal, H., & Taysi, S. (2021). Metformin reduces ovarian ischemia reperfusion injury in rats by improving oxidative/nitrosative stress. Taiwanese Journal of Obstetrics & Gynecology, 60, 45–50. Vanuffelen, B. E., Van Der Zee, J., De Koster, B. M., Vansteveninck, J., & Elferink, J. G. (1998). Intracellular but not extracellular conversion of nitroxyl anion into nitric oxide leads to stimulation of human neutrophil migration. The Biochemical Journal, 330(Pt 2), 719–722. Jain, S. K., McVie, R., Duett, J., & Herbst, J. J. (1989). Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes, 38, 1539–1543. Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162, 156–159. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods, 25, 402–408. Duan, J., Tao, J., Zhai, M., Li, C., Zhou, N., Lv, J., Wang, L., Lin, L., & Bai, R. (2018). Anticancer drugs-related QTc prolongation, torsade de pointes and sudden death: Current evidence and future research perspectives. Oncotarget, 9, 25738–25749. Stanely Mainzen Prince, P., Dey, P., & Roy, S. J. (2020). Sinapic acid safeguards cardiac mitochondria from damage in isoproterenol-induced myocardial infarcted rats. Journal of Biochemical and Molecular Toxicology, 34, e22556. Silambarasan, T., Manivannan, J., Krishna Priya, M., Suganya, N., Chatterjee, S., & Raja, B. (2014). Sinapic acid prevents hypertension and cardiovascular remodeling in pharmacological model of nitric oxide inhibited rats. PLoS ONE, 9, e115682. Yun, U. J., & Yang, D. K. (2020). Sinapic acid inhibits cardiac hypertrophy via activation of mitochondrial Sirt3/SOD2 signaling in neonatal rat cardiomyocytes. Antioxidants (Basel). https://doi.org/10.3390/antiox9111163 Bin Jardan, Y. A., Ansari, M. A., Raish, M., Alkharfy, K. M., Ahad, A., Al-Jenoobi, F. I., Haq, N., Khan, M. R., & Ahmad, A. (2020). Sinapic acid ameliorates oxidative stress, inflammation, and apoptosis in acute doxorubicin-induced cardiotoxicity via the NF-kappaB-mediated pathway. BioMed Research International, 2020, 3921796. Crohns, M., Liippo, K., Erhola, M., Kankaanranta, H., Moilanen, E., Alho, H., & Kellokumpu-Lehtinen, P. (2009). Concurrent decline of several antioxidants and markers of oxidative stress during combination chemotherapy for small cell lung cancer. Clinical Biochemistry, 42, 1236–1245. Demkow, U., Biatas-Chromiec, B., Stelmaszczyk-Emmel, A., Radzikowska, E., Wiatr, E., Radwan-Rohrenschef, P., & Szturmowicz, M. (2011). The cardiac markers and oxidative stress parameters in advanced non-small cell lung cancer patients receiving cisplatin-based chemotherapy. Ejifcc, 22, 6–15. El-Sawalhi, M. M., & Ahmed, L. A. (2014). Exploring the protective role of apocynin, a specific NADPH oxidase inhibitor, in cisplatin-induced cardiotoxicity in rats. Chemico-Biological Interactions, 207, 58–66. Hussein, A., Ahmed, A. A., Shouman, S. A., & Sharawy, S. (2012). Ameliorating effect of DL-alpha-lipoic acid against cisplatin-induced nephrotoxicity and cardiotoxicity in experimental animals. Drug Discoveries & Therapeutics, 6, 147–156. Zou, Y., Kim, A. R., Kim, J. E., Choi, J. S., & Chung, H. Y. (2002). Peroxynitrite scavenging activity of sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) isolated from Brassica juncea. Journal of Agricultural and Food Chemistry, 50, 5884–5890. Pacher, P., Beckman, J. S., & Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiological Reviews, 87, 315–424. Topal, I., Ozbek Bilgin, A., Keskin Cimen, F., Kurt, N., Suleyman, Z., Bilgin, Y., Ozcicek, A., & Altuner, D. (2018). The effect of rutin on cisplatin-induced oxidative cardiac damage in rats. Anatolian Journal of Cardiology, 20, 136–142. Folden, D. V., Gupta, A., Sharma, A. C., Li, S. Y., Saari, J. T., & Ren, J. (2003). Malondialdehyde inhibits cardiac contractile function in ventricular myocytes via a p38 mitogen-activated protein kinase-dependent mechanism. British Journal of Pharmacology, 139, 1310–1316. Nicolson, G. L., & Conklin, K. A. (2006). Molecular replacement for cancer metabolic and mitochondrial dysfunction, fatigue and the adverse effects of cancer therapy. Cancer Genomics & Proteomics, 3, 159–168. Satoh, M., Kashihara, N., Fujimoto, S., Horike, H., Tokura, T., Namikoshi, T., Sasaki, T., & Makino, H. (2003). A novel free radical scavenger, edarabone, protects against cisplatin-induced acute renal damage in vitro and in vivo. The Journal of Pharmacology and Experimental Therapeutics, 305, 1183–1190. Dugbartey, G. J., Peppone, L. J., & de Graaf, I. A. (2016). An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures. Toxicology, 371, 58–66. Ramesh, G., & Reeves, W. B. (2002). TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. The Journal of Clinical Investigation, 110, 835–842. Topcu-Tarladacalisir, Y., Sapmaz-Metin, M., & Karaca, T. (2016). Curcumin counteracts cisplatin-induced nephrotoxicity by preventing renal tubular cell apoptosis. Renal Failure, 38, 1741–1748. Lee, J. Y. (2018). Anti-inflammatory effects of sinapic acid on 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice. Archives of Pharmacal Research, 41, 243–250. Luan, X. D., Zhao, K. H., Hou, H., Gai, Y. H., Wang, Q. T., Mu, Q., & Wan, Y. (2017). Changes in ischemia-modified albumin in myocardial toxicity induced by anthracycline and docetaxel chemotherapy. Medicine, 96, e7681. Rosic, G., Selakovic, D., Joksimovic, J., Srejovic, I., Zivkovic, V., Tatalovic, N., Orescanin-Dusic, Z., Mitrovic, S., Ilic, M., & Jakovljevic, V. (2016). The effects of N-acetylcysteine on cisplatin-induced changes of cardiodynamic parameters within coronary autoregulation range in isolated rat hearts. Toxicology Letters, 242, 34–46. Ma, Y. H., Kang, W. J., Bao, Y. X., Jiao, F. B., & Ma, Y. R. (2013). Clinical significance of ischemia-modified albumin in the diagnosis of doxorubicin-induced myocardial injury in breast cancer patients. PLoS ONE, 8, e79426. Chen, L., Hambright, W. S., Na, R., & Ran, Q. (2015). Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis. The Journal of Biological Chemistry, 290, 28097–28106. Ran, Q., Van Remmen, H., Gu, M., Qi, W., Roberts, L. J., 2nd., Prolla, T., & Richardson, A. (2003). Embryonic fibroblasts from Gpx4+/- mice: A novel model for studying the role of membrane peroxidation in biological processes. Free Radical Biology & Medicine, 35, 1101–1109. Park, T. J., Park, J. H., Lee, G. S., Lee, J. Y., Shin, J. H., Kim, M. W., Kim, Y. S., Kim, J. Y., Oh, K. J., Han, B. S., Kim, W. K., Ahn, Y., Moon, J. H., Song, J., Bae, K. H., Kim, D. H., Lee, E. W., & Lee, S. C. (2019). Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes. Cell Death and Disease, 10, 1–5. Feng, Y. S., Madungwe, N. B., Aliagan, A. D. I., Tombo, N., & Bopassa, J. C. (2019). Liproxstatin-1 protects the mouse myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and restoring GPX4 levels. Biochemical and Biophysical Research Communications, 520, 606–611. Liu, Q., & Wang, K. (2019). The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin. Cell Biology International, 43, 1245–1256. Gordon, J. W., Shaw, J. A., & Kirshenbaum, L. A. (2011). Multiple facets of NF-kappaB in the heart: To be or not to NF-kappaB. Circulation Research, 108, 1122–1132.