Simultaneously down-regulation of multiplex branch pathways using CRISPRi and fermentation optimization for enhancing β-amyrin production in Saccharomyces cerevisiae
Tài liệu tham khảo
Melo, 2010, α, β-amyrin, a natural triterpenoid ameliorates l-arginine-induced acute pancreatitis in rats, World J Gastroenterol, 16, 4272, 10.3748/wjg.v16.i34.4272
Vázquez, 2012
Hamburger, 2003, Preparative purification of the major anti-inflammatory triterpenoid esters from marigold (calendula officinalis), Fitoterapia, 74, 328, 10.1016/S0367-326X(03)00051-0
Simándi, 2002, Supercritical fluid extraction of dandelion leaves, J Supercrit Fluids, 23, 135, 10.1016/S0896-8446(02)00012-8
Corey, 1994, Cheminform abstract: enantioselective total synthesis of oleanolic acid, erythrodiol, β -amyrin, and other pentacyclic triterpenes from a common intermediate, ChemInform, 25
Huang, 1999, An exceptionally short and simple enantioselective total synthesis of pentacyclic triterpenes of the β-amyrin family, J Am Chem Soc, 121, 9999, 10.1021/ja992411p
Zhang, 2015, Refactoring β‐amyrin synthesis in saccharomyces cerevisiae, AIChE J, 61, 3172, 10.1002/aic.14950
Jakočiūnas, 2015, Multiplex metabolic pathway engineering using crispr/cas9 in saccharomyces cerevisiae, Metab Eng, 28, 213, 10.1016/j.ymben.2015.01.008
Yaping, 2018, Sensor-regulator and RNAi based bifunctional dynamic control network for engineered microbial synthesis, Nat Commun, 9, 3043, 10.1038/s41467-018-05466-0
2017, De Novo Biosynthesis of Glutarate via α-Keto Acid Carbon Chain Extension and Decarboxylation Pathway in Escherichia coli, ACS Synth Biol, 6, 1922, 10.1021/acssynbio.7b00136
Güldener, 1996, A new efficient gene disruption cassette for repeated use in budding yeast, Nucleic Acids Res, 24, 2519, 10.1093/nar/24.13.2519
Urnov, 2010, Genome editing with engineered zinc finger nucleases, Nat Rev Genet, 11, 636, 10.1038/nrg2842
Moscou, 2009, A simple cipher governs dna recognition by tal effectors, Science, 326, 10.1126/science.1178817
Drinnenberg, 2009, Rnai in budding yeast, Science, 326, 544, 10.1126/science.1176945
Mali, 2013, Rna-guided human genome engineering via cas9, Science, 339, 823, 10.1126/science.1232033
Chang, 2013, Genome editing with rna-guided cas9 nuclease in zebrafish embryos, Cell Res, 23, 465, 10.1038/cr.2013.45
Qi, 2013, Repurposing crispr as an rna-guided platform for sequence-specific control of gene expression, Cell, 152, 1173, 10.1016/j.cell.2013.02.022
Gilbert, 2013, Crispr-mediated modular rna-guided regulation of transcription in eukaryotes, Cell, 154, 442, 10.1016/j.cell.2013.06.044
Dicarlo, 2013, Genome engineering in saccharomyces cerevisiae using crispr-cas systems, Nucleic Acids Res, 41, 4336, 10.1093/nar/gkt135
Lian, 2017, Combinatorial metabolic engineering using an orthogonal tri-functional crispr system, Nat Commun, 8, 1688, 10.1038/s41467-017-01695-x
Kuete, 2008, Antimicrobial activity of the crude extracts and compounds from Ficus chlamydocarpa and Ficus cordata, J Ethnopharmacol, 120, 17, 10.1016/j.jep.2008.07.026
Dias, 2011, Separação semipreparativa de α e β-amirina por cromatografia líquida de alta eficiência, Quím Nova, 34, 704, 10.1590/S0100-40422011000400026
Lian, 2014, Design and construction of acetyl-coa overproducing saccharomyces cerevisiae strains, Metab Eng, 24, 139, 10.1016/j.ymben.2014.05.010
Maaheimo, 2001, Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional (13)C labeling of common amino acids, Eur J Biochem, 268, 2464, 10.1046/j.1432-1327.2001.02126.x
Shiba, 2007, Engineering of the pyruvate dehydrogenase bypass in saccharomyces cerevisiae for high-level production of isoprenoids, Metab Eng, 9, 160, 10.1016/j.ymben.2006.10.005
Chen, 2013, Establishing a platform cell factory through engineering of yeast acetyl-coa metabolism, Metab Eng, 15, 48, 10.1016/j.ymben.2012.11.002
Strijbis, 2010, Intracellular acetyl unit transport in fungal carbon metabolism, Eukaryot Cell, 9, 1809, 10.1128/EC.00172-10
Nałecz, 1991, Purification and functional characterisation of the pyruvate (monocar ylate) carrier from baker's yeast mitochondria (saccharomyces cerevisiae), Biochim Biophys Acta, 1079, 87, 10.1016/0167-4838(91)90028-X
De, 2008, The alcohol dehydrogenases of saccharomyces cerevisiae: a comprehensive review, FEMS Yeast Res, 8, 967, 10.1111/j.1567-1364.2008.00387.x
Bakker, 2000, The mitochondrial alcohol dehydrogenase adh3p is involved in a redox shuttle in saccharomyces cerevisiae, J Bacteriol, 182, 4730, 10.1128/JB.182.17.4730-4737.2000
Larroy, 2002, Characterization of the saccharomyces cerevisiaeymr318c (adh6) gene product as a broad specificity nadph-dependent alcohol dehydrogenase, Biochem J, 361, 163, 10.1042/bj3610163
Horton, 1989, Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension, Gene, 77, 61, 10.1016/0378-1119(89)90359-4
M'Baya, 1989, Regulation of squalene synthetase and squalene epoxidase activities in saccharomyces cerevisiae, Lipids, 24, 1020, 10.1007/BF02544072
Veen, 2003, Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in saccharomyces cerevisiae, FEMS Yeast Res, 4, 87, 10.1016/S1567-1356(03)00126-0
Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829
Birol, 1998, Mathematical description of ethanol fermentation by immobilized Saccharomyces cerevisiae, Process Biochem, 33, 763, 10.1016/S0032-9592(98)00047-8
Gavira, 2013, Challenges and pitfalls of p450-dependent (+)-valencene bioconversion by saccharomyces cerevisiae, Metab Eng, 18, 25, 10.1016/j.ymben.2013.02.003
Yokose, 2004, Anti-fungal sesquiterpenoid from the root exudate of solanum abutiloides, J Agric Chem Soc Jpn, 68, 2640
Moses, 2014, Combinatorial biosynthesis of sapogenins and saponins in saccharomyces cerevisiae using a c-16α hydroxylase from bupleurum falcatum, Proc Natl Acad Sci USA, 111, 1634, 10.1073/pnas.1323369111