Simultaneously Efficient Solar Light Harvesting and Charge Transfer of Hollow Octahedral Cu2S/CdS p–n Heterostructures for Remarkable Photocatalytic Hydrogen Generation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Munir AB, Muhammad-Sukki F, Bani NA (2016) Renewables: solar energy needs focus. Nature 529(7587):466
Wu H, Tan HL, Toe CY et al (2020) Photocatalytic and photoelectrochemical systems: similarities and differences. Adv Mater 32(18):e1904717
Zhang XM, Liang HC, Li HZ et al (2020) Sequential chemistry toward core-shell structured metal sulfides as stable and highly efficient visible-light photocatalysts. Angewandte Chemie Int Ed 59(8):3287–3293
Wang PF, Shen ZR, Xia YG et al (2019) Atomic insights for optimum and excess doping in photocatalysis: a case study of few-layer Cu-ZnIn2S4. Adv Funct Mater 29(3):1807013
Gao HW, Liu C, Jeong HE et al (2012) Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars. ACS Nano 6(1):234–240
Hou JG, Yang C, Cheng HJ et al (2014) High-performance p-Cu2O/n-TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting. Energy Environ Sci 7(11):3758–3768
Hou JG, Cheng HJ, Zhu HM et al (2015) Three-dimensional bimetal graphene semiconductor coaxial nanowire arrays to harness charge flow for the photochemical reduction of carbon dioxide. Angew Chem Int Ed 127(29):8600–8604
Guo MJ, Zhao TY, Xing ZP et al (2020) Hollow octahedral Cu2-xS/CdS/Bi2S3 p-n-p type tandem heterojunctions for efficient photothermal effect and robust visible-light-driven photocatalytic performance. ACS Appl Mater Interfaces 12(36):40328–40338
Huang Y, Fang YJ, Lu XF et al (2020) Co3O4 hollow nanoparticles embedded in mesoporous walls of carbon nanoboxes for efficient lithium storage. Angew Chem Int Ed 59(45):19914–19918
Zhang P, Luan DY, Lou XW et al (2020) Fabrication of CdS frame-in-cage particles for efficient photocatalytic hydrogen generation under visible-light irradiation. Adv Mater 32(39):2004561
Wang Y, Wang SB, Zhang SL et al (2020) Formation of hierarchical FeCoS2-CoS2 double-shelled nanotubes with enhanced performance for photocatalytic reduction of CO2. Angew Chem Int Ed 59(29):11918–11922
Wang SB, Guan BY, Lou XWD et al (2018) Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. J Am Chem Soc 140(15):5037–5040
Wang SB, Wang Y, Zhang SL et al (2019) Supporting ultrathin ZnIn2S4 nanosheets on Co/N-doped graphitic carbon nanocages for efficient photocatalytic H2 generation. Adv Mater 31(41):1903404
Wei YZ, Wan JW, Wang JY et al (2021) Hollow multishelled structured SrTiO3 with La/Rh Co-doping for enhanced photocatalytic water splitting under visible light. Small. https://doi.org/10.1002/smll.202005345
Jia TK, Liu M, Zheng CY et al (2020) One pot hydrothermal synthesis of La-doped ZnIn2S4 microspheres with improved visible-light photocatalytic performance. Nanomaterials. 10(10):2026
Shi JW, Chen F, Hou LL et al (2021) Eosin Y bidentately bridged on UiO-66-NH2 by solvothermal treatment towards enhanced visible-light-driven photocatalytic H2 production. Appl Catal B Environ 280:119385
Zhang SY, Du M, Xing ZP et al (2020) Defect-rich and electron-rich mesoporous Ti-MOFs based NH2-MIL-125(Ti)@ZnIn2S4/CdS hierarchical tandem heterojunctions with improved charge separation and enhanced solar-driven photocatalytic performance. Appl Catal B: Environ 262:118202
He YQ, Rao H, Song KP et al (2019) (2019) 3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction. Adv Funct Mater 29(45):1905153
Wang L, Zhou HH, Zhang HZ et al (2020) Facile in situ formation of a ternary 3D ZnIn2S4-MoS2 microsphere/1D CdS nanorod heterostructure for high efficiency visible-light photocatalytic H2 production. Nanoscale 12(25):13791–13800
Cao SY, Wu YZ, Hou JG et al (2020) 3D porous pyramid heterostructure array realizing efficient photo-electrochemical performance. Adv Energy Mater 10(5):1902935
Qiu BC, Zhu QH, Du MM et al (2017) Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting. Angewandte Chemie Int Ed 56(10):2684–2688
Zhao XX, Feng JR, Liu J et al (2018) An efficient, visible-light-driven, hydrogen evolution catalyst NiS/ZnxCd1-xS nanocrystal derived from a metal–organic framework. Angewandte Chemie Int Ed 57(31):9790–9794
Zhang TX, Meng FL, Cheng Y et al (2021) Z-scheme transition metal bridge of Co9S8/Cd/CdS tubular heterostructure for enhanced photocatalytic hydrogen evolution. Appl Catal B: Environ 286:119853
Zhang J, Yu J, Zhang Y et al (2011) Visible light photocatalytic H2 production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett 11(11):4774–4779
Sheng JL, Chen JH, Kang JH et al (2019) Octahedral Cu2O@Co(OH)2 nanocages with hierarchical flake-like walls and yolk-shell structures for enhanced electrocatalytic activity. ChemCatChem 11(10):2520–2525
Zheng DD, Zhang GG, Wang XC et al (2015) Integrating CdS quantum dots on hollow graphitic carbon nitride nanospheres for hydrogen evolution photocatalysis. Appl Catal B: Environ 179:479–488
Ji MW, Li XY, Wang HZ et al (2017) Versatile synthesis of yolk/shell hybrid nanocrystals via ion-exchange reactions for novel metal/semiconductor and semiconductor/semiconductor conformations. Nano Res 10(9):2977–2987
Ran L, Yin LW (2017) Double-walled heterostructured Cu2-xSe/Cu7S4 nanoboxes with enhanced electrocatalytic activity for quantum dot sensitized solar cells. CrystEngComm 19(37):5640–5652
Bhavani P, Kumar DP, Shim HS et al (2020) In situ addition of Ni salt onto a skeletal Cu7S4 integrated CdS nanorod photocatalyst for efficient production of H2 under solar light irradiation. Catal Sci Technol 1(11):3542–3551
Zhong LX, Mao BD, Liu M et al (2021) Construction of hierarchical photocatalysts by growing ZnIn2S4 nanosheets on Prussian blue analogue-derived bimetallic sulfides for solar co-production of H2 and organic chemicals. J Energy Chem 54:386–394
Tang R, Yin LW (2015) Enhanced photovoltaic performance of dye-sensitized solar cells based on Sr-doped TiO2/SrTiO3 nanorod array heterostructures. J Mater Chem A 3(33):17417–17425
Xu WW, Tian W, Meng LX et al (2021) Interfacial chemical bond-modulated Z-scheme charge transfer for efficient photoelectrochemical water splitting. Adv Energy Mater 11(8):2003500
Tan PF, Zhu AQ, Qiao LL et al (2019) Constructing a direct Z-scheme photocatalytic system based on 2D/2D WO3/ZnIn2S4 nanocomposite for efficient hydrogen evolution under visible light. Inorg Chem Front 6(4):929–939
Cai XY, Mao L, Yang SQ et al (2018) Ultrafast charge separation for full solar spectrum-activated photocatalytic H2 generation in a black phosphorus-Au-CdS heterostructure. ACS Energy Lett 3(4):932–939
Zhang SQ, Liu X, Liu CB et al (2018) MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 12(1):751–758
Swain G, Sultana S, Parida K et al (2019) One-pot-architectured Au- nanodot-promoted MoS2/ZnIn2S4: a novel p–n heterojunction photocatalyst for enhanced hydrogen production and phenol degradation. Inorg Chem 58(15):9941–9955
Chen YB, Li JF, Liao PY et al (2020) Cascaded electron transition in CuWO4/CdS/CDs heterostructure accelerating charge separation towards enhanced photocatalytic activity. Chin Chem Lett 31(6):1516–1519
Xiao R, Zhao CX, Zou ZY et al (2020) In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl Catal B: Environ 268:118382
Mao L, Cai XY, Zhu MS et al (2021) Hierarchically 1D CdS decorated on 2D perovskite-type La2Ti2O7 nanosheet hybrids with enhanced photocatalytic performance. Rare Met 40(5):1067–1076
Ding MY, Xiao R, Zhao CX et al (2020) Evidencing interfacial charge transfer in 2D CdS/2D MXene Schottky heterojunctions toward high-efficiency photocatalytic hydrogen production. Sol RRL 5(2):2000414
Cai L, Du YC, Guan XJ et al (2019) CdS nanocrystallites sensitized ZnO nanorods with plasmon enhanced photoelectrochemical performance. Chin Chem Lett 30(12):2363–2367