Simultaneously Achieved High Open‐Circuit Voltage and Efficient Charge Generation by Fine‐Tuning Charge‐Transfer Driving Force in Nonfullerene Polymer Solar Cells

Advanced Functional Materials - Tập 28 Số 6 - 2018
Ailing Tang1, Bo Xiao1, Yuming Wang2, Feng Gao2, Keisuke Tajima3, Haijun Bin4, Zhiguo Zhang4, Yongfang Li4, Zhixiang Wei1, Erjun Zhou1
1CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
2Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE 581 83, Sweden
3Emergent Functional Polymers Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako 351-0198, Japan
4Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Tóm tắt

AbstractTo maximize the short‐circuit current density (JSC) and the open circuit voltage (VOC) simultaneously is a highly important but challenging issue in organic solar cells (OSCs). In this study, a benzotriazole‐based p‐type polymer (J61) and three benzotriazole‐based nonfullerene small molecule acceptors (BTA1‐3) are chosen to investigate the energetic driving force for the efficient charge transfer. The lowest unoccupied molecular orbital (LUMO) energy levels of small molecule acceptors can be fine‐tuned by modifying the end‐capping units, leading to high VOC (1.15–1.30 V) of OSCs. Particularly, the LUMO energy level of BTA3 satisfies the criteria for efficient charge generation, which results in a high VOC of 1.15 V, nearly 65% external quantum efficiency, and a high power conversion efficiency (PCE) of 8.25%. This is one of the highest VOC in the high‐performance OSCs reported to date. The results imply that it is promising to achieve both high JSC and VOC to realize high PCE with the carefully designed nonfullerene acceptors.

Từ khóa


Tài liệu tham khảo

10.1002/adma.201602776

10.1002/adma.201700144

10.1021/jacs.6b09110

10.1038/ncomms13651

10.1038/ncomms13740

10.1021/jacs.7b02677

10.1103/PhysRevApplied.4.014020

10.1002/pip.1044

10.1038/nphoton.2014.134

10.1021/ja506785w

10.1002/adma.200501717

10.1002/adma.201003768

10.1063/1.2766857

10.1002/adma.201002360

10.1021/ja210029w

10.1038/nmat3807

10.1038/nmat2548

10.1002/aenm.201500123

10.1021/cm402403z

10.1103/PhysRevB.81.125204

10.1021/ar2002446

Xiao B., 2016, Adv. Energy Mater., 1602269

10.1021/acsmacrolett.7b00097

10.1002/adfm.200600624

10.1021/jacs.6b01744

10.1002/adma.201606574

10.1039/c3ta10640c

10.1002/adma.201001339

10.1021/jacs.6b05868

10.1021/ja1042726

10.1021/ja308177d

10.1021/ja076568q

Yoshida H., 2015, Phys. Rev. B, 92

10.1038/nenergy.2016.89

10.1002/adfm.201603892

10.1039/C6EE02598F

10.1016/j.tsf.2006.12.105

10.1038/srep06071

10.1002/adma.201204306

10.1002/adma.201503902

10.1021/ja209328m

10.1021/jacs.6b04822

10.1002/adma.201405485

10.1002/aenm.201200426

10.1021/jp1119348

10.1021/nn204996w

10.1002/adfm.201601880

10.1002/aenm.201600148

10.1002/adma.201405913

10.1002/adma.201504417

10.1002/aenm.201200474