Simultaneous measurement of surface tension and viscosity of oscillating droplet using time-resolved rainbow refractometry

Powder Technology - Tập 391 - Trang 425-431 - 2021
Yingchun Wu1, Qimeng Lv1, Xuecheng Wu1, Xinhao Wang1, Linghong Chen1, Kefa Cen1
1State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China

Tài liệu tham khảo

Breinlinger, 2015, Simulation of the influence of surface tension on granule morphology during spray drying using a simple capillary force model, Powder Technol., 283, 1, 10.1016/j.powtec.2015.05.009 Fukuta, 2017, Surface tension measurement of oil/refrigerant mixture by maximum bubble pressure method, Int. J. Refrig., 73, 125, 10.1016/j.ijrefrig.2016.09.004 Kinoshita, 2017, New sensitive micro-measurements of dynamic surface tension and diffusion coefficients: validated and tested for the adsorption of 1-octanol at a microscopic air-water interface and its dissolution into water, J. Colloid Interface Sci., 488, 166, 10.1016/j.jcis.2016.10.052 Nguyen, 2020, An original method for measuring liquid surface tension from capillary bridges between two equal-sized spherical particles, Powder Technol., 363, 349, 10.1016/j.powtec.2019.12.049 Berry, 2015, Measurement of surface and interfacial tension using pendant drop tensiometry, J. Colloid Interface Sci., 454, 226, 10.1016/j.jcis.2015.05.012 Zang, 2016, Sectorial oscillation of acoustically levitated nanoparticle-coated droplet, Appl. Phys. Lett., 108, 10.1063/1.4940143 Kremer, 2018, Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets, Rev. Sci. Instrum., 89, 10.1063/1.4998796 Li, 2017, Droplet deformation under pulsatile electric fields, Chem. Eng. Res. Des., 127, 180, 10.1016/j.cherd.2017.09.024 Trinh, 1982, Large-amplitude free and driven drop-shape oscillations: experimental observations, J. Fluid Mech., 122, 315, 10.1017/S0022112082002237 Trinh, 1996, The dynamics of ultrasonically levitated drops in an electric field, Phys. Fluids, 8, 43, 10.1063/1.868813 Berglund, 1973, Generation of monodisperse aerosol standards, Environ. Sci. Technol., 7, 147, 10.1021/es60074a001 Wu, 2020, Dual-stream of monodisperse droplet generator, Chem. Eng. Sci., 223, 115645, 10.1016/j.ces.2020.115645 Brenn, 1993, An experimental method for the investigation of droplet oscillations in a gaseous medium, Exp. Fluids, 15, 85, 10.1007/BF00190947 Staat, 2017, Ultrafast imaging method to measure surface tension and viscosity of inkjet-printed droplets in flight, Exp. Fluids, 58, 2, 10.1007/s00348-016-2284-8 Miles, 2019, Surface tensions of picoliter droplets with sub-millisecond surface age, J. Phys. Chem. A, 123, 3021, 10.1021/acs.jpca.9b00903 Rayleigh, 1879, On the capillary phenomena of jets, Proc. R. Soc. Lond., 29, 71 Versluis, 2013, High-speed imaging in fluids, Exp. Fluids, 54, 1458, 10.1007/s00348-013-1458-x Becker, 1991, Experimental and theoretical investigation of large-amplitude oscillations of liquid droplets, J. Fluid Mech., 231, 189, 10.1017/S0022112091003361 Chen, 1993, Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets, Opt. Lett., 18, 10.1364/OL.18.001993 Liu, 2015, Transmission-speckle correlation for measuring dynamic deformation of liquid surface, Opt. Lasers Eng., 65, 110, 10.1016/j.optlaseng.2014.06.015 Marston, 1980, Rainbow phenomena and the detection of nonsphericity in drops, Appl. Opt., 19, 680, 10.1364/AO.19.000680 Möbius, 1907, Vol. 30 Lock, 2000, Supernumerary spacing of rainbows produced by an elliptical-cross-section cylinder. i. theory, Appl. Opt., 39, 5040, 10.1364/AO.39.005040 Adler, 2001, Supernumerary spacing of rainbows produced by an elliptical-cross-section cylinder. ii. experiment, Appl. Opt., 40, 2535, 10.1364/AO.40.002535 Yu, 2015, Application of vector ray tracing to the computation of möbius shifts for the primary and secondary rainbows, Appl. Opt., 54, 9093, 10.1364/AO.54.009093 Wu, 2014, One-dimensional rainbow thermometry system by using slit apertures, Opt. Lett., 39, 638, 10.1364/OL.39.000638 Wu, 2015, One-dimensional rainbow technique using fourier domain filtering, Opt. Express, 23, 30545, 10.1364/OE.23.030545 Li, 2017, The effect of initial diameter on rainbow positions and temperature distributions of burning single-component n-alkane droplets, J. Quant. Spectrosc. Radiat. Transf., 195, 164, 10.1016/j.jqsrt.2017.01.004 Wu, 2019, Change of evaporation rate of single monocomponent droplet with temperature using time-resolved phase rainbow refractometry, Proc. Combust. Inst., 37, 3211, 10.1016/j.proci.2018.09.026 Lv, 2020, Surface tension and viscosity measurement of oscillating droplet using rainbow refractometry, Opt. Lett., 45, 6687, 10.1364/OL.412498 Lamb, 1881, On the oscillations of a viscous spheroid, Proc. Lond. Math. Soc., 1, 51, 10.1112/plms/s1-13.1.51 Prosperetti, 1980, Free oscillations of drops and bubbles: the initial-value problem, J. Fluid Mech., 100, 333, 10.1017/S0022112080001188 Sirignano, 2000, Review of theory of distortion and disintegration of liquid streams, Prog. Energy Combust. Sci., 26, 609, 10.1016/S0360-1285(00)00014-9 Saengkaew, 2006, Rainbow refractrometry: on the validity domain of airy’s and nussenzveig’s theories, Opt. Commun., 259, 7, 10.1016/j.optcom.2005.08.031 Roth, 1991, Refractive-index measurements for the correction of particle sizing methods, Appl. Opt., 30, 4960, 10.1364/AO.30.004960 Li, 2020, Simultaneous measurement of refractive index, diameter and colloid concentration of a droplet using rainbow refractometry, J. Quant. Spectrosc. Radiat. Transf., 245, 106834, 10.1016/j.jqsrt.2020.106834