Simultaneous heat integration and the synthesis of biogas processes from animal waste

Asia-Pacific Journal of Chemical Engineering - Tập 6 Số 5 - Trang 734-749 - 2011
Rozalija Drobež1, Zorka Novak Pintarič2, Bojan Pahor3, Zdravko Kravanja2
1Scientific Research Centre Bistra Ptuj, Slovenski trg 6, SI‐2250 Ptuj, Slovenia
2Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, SI-2000 Maribor, Slovenia
3Perutnina Ptuj, Potrčeva 10, SI‐2250 Ptuj, Slovenia

Tóm tắt

AbstractThe objective of this work was to perform simultaneous heat integration and the synthesis of biogas process based on the mixed‐integer nonlinear programming (MINLP) model. A synthesis model recently developed by Drobež et al. [R. Drobež, Z. Novak Pintarič, B. Pahor, Z. Kravanja. Chem. Biochem. Eng. Q, 2009; 23, 445–459] has been upgraded for simultaneous heat integration. An industrial case study was solved in order to describe the mathematical model and to illustrate the heat‐integrated MINLP synthesis approach. The optimal solution indicates that during the synthesis of biogas process and when selecting the best auxiliary facilities significant benefit can be obtained if the selected process and auxiliary facilities are heat integrated. In this way almost the complete consumption of hot utility and 1/3 of cold utility can be saved, and thus most of the electricity and heat produced in the cogeneration system from biogas can be sold as surplus to the distribution networks. The proposed optimal synthesis of heat‐integrated biogas process may improve a company's economic performance and significantly reduce its environmental impact by converting environmentally harmful organic and animal wastes into valuable products. Copyright © 2010 Curtin University of Technology and John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

Narodoslawsky M., 2003, Chem. Biochem. Eng. Q, 17, 55

10.1016/j.jclepro.2006.08.023

10.1016/S0959-6526(00)00021-4

10.1016/j.enconman.2009.03.013

10.1016/j.jclepro.2009.02.001

10.1016/j.biortech.2007.01.057

Steffen R., 1998, Feedstocks for Anaerobic Digestion

10.1016/S0960-1481(00)00019-7

10.1016/j.biortech.2008.02.044

10.1016/j.biortech.2008.12.046

10.1016/S0960-8524(00)00023-7

10.1016/S0960-8524(01)00199-7

IEA, 2005, Bioenergy Task 37, Biogas Production and Utilisation

10.1016/j.renene.2008.06.013

10.1016/j.applthermaleng.2006.05.002

10.1016/j.techsoc.2008.10.006

Söderman J., Appl. Therm. Eng.

10.1016/j.energy.2009.05.004

Rašković P., 2009, Energy

10.1016/1359-4311(95)00036-4

10.1016/j.jfoodeng.2005.06.007

10.1016/j.applthermaleng.2008.02.007

Lam H.L., 2010, Comput. Chem. Eng.

10.1016/j.cherd.2009.06.014

10.1016/j.applthermaleng.2009.03.008

10.1002/aic.690320114

10.1016/0098-1354(90)80001-R

10.1007/BF02698263

10.1021/ie071182

10.1016/j.jclepro.2008.04.005

10.1016/0098-1354(88)85044-0

10.1016/j.jfoodeng.2005.08.005

Grossmann I.E., 1997, Mixed‐Integer Nonlinear Programming: A Survey of Algorithms and Applications, 73

10.1016/j.compchemeng.2003.11.003

10.1016/j.compchemeng.2003.11.006

Drobež R., 2009, Chem. Biochem. Eng. Q, 23, 445

Biegler L.T., 1997, Systematic Methods of Chemical Process Design

http://www.gams.com/dd/docs/solvers/baron.pdf.

Brooke A., 2005, GAMS: A Users Guide

10.1007/s10898-004-2705-8