Simultaneous UPLC–TQ-MS/MS determination of six active components in rat plasma: application in the pharmacokinetic study of Cyclocarya paliurus leaves
Tóm tắt
Cyclocarya paliurus (Batal.) Ijinskaja (CP) is a monotypic genus plant, also called sweet tea tree that belongs to the Juglandaceae family, which is mainly distributed in the subtropical highlands in China. Our previous work has verified that CP leaves exhibit a potent hyperglycemic effect by inhibiting pancreatic β cell apoptosis through the regulation of MPAK and Akt signaling pathways. However, the components that contribute to this potential health benefit remain undiscovered. A sensitive, reliable, and validated ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UPLC–TQ-MS/MS) method was developed to simultaneously determine the presence of six active components (neochlorogenic acid, chlorogenic acid, quercetin-3-O-glucuronide, kaempferol-3-O-rhamnoside, quercetin, and kaempferol) in rat plasma after a single oral administration (in a dosage of 10.5 g/kg) of an extract of CP leaves to rats. The separation was performed on a Waters ACQUITY BEH C18 column (50 mm × 2.1 mm, 1.7 μm). The detection was conducted by multiple reaction monitoring (MRM) in negative ionization mode. The two highest abundant MRM transitions without interference were optimized for each analyte. Acetonitrile and formic acid aqueous solution (0.1%) was used as the mobile phase at a flow rate of 0.3 ml/min. The precision, accuracy, and recovery all satisfied the criteria of international guidance (Bioanalytical Method Validation Guidance for Industry, Food and Drug Administration), and the analytes were stable in plasma for all tested conditions. The main pharmacokinetic parameters were calculated by plasma concentration versus time profiles using the pharmacokinetics program. The pharmacokinetic parameters of each compound can facilitate future clinical studies.
Tài liệu tham khảo
Zhai L, Ning ZW, Huang T, Wen B, Liao CH, Lin CY, et al. Cyclocarya paliurus leaves tea improves dyslipidemia in diabetic mice: a lipidomics-based network pharmacology study. Front Pharmacol. 2018;9:973–85.
Ma YL, Jiang CH, Yao N, Li Y, Wang QQ, Fang SZ, et al. Antihyperlipidemic effect of Cyclocarya paliurus (Batal.) Iljinskaja extract and inhibition of apolipoprotein B48 overproduction in hyperlipidemic mice. J Ethnopharmacol. 2015;166:286–96.
Cao Y, Fang S, Yin Z, Fu X, Shang X, Yang W, et al. Chemical fingerprint and multicomponent quantitative analysis for the quality evaluation of Cyclocarya paliurus leaves by HPLC-Q-TOF-MS. Molecules. 2017;22(11):1927–43.
Xiao HT, Wen B, Ning ZW, Zhai LX, Liao CH, Lin CY, et al. Cyclocarya paliurus tea leaves enhances pancreatic beta cell preservation through inhibition of apoptosis. Sci Rep. 2017;7:9155–68.
Li XN, Zhang A, Wang M, Sun H, Liu Z, Qiu S, et al. Screening the active compounds of Phellodendri Amurensis cortex for treating prostate cancer by high-throughput chinmedomics. Sci Rep. 2017;7:46234–49.
Bao LP, Li JS, Zha DQ, Zhang L, Gao P, Yao T, et al. Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-kappa B pathways. Int Immunopharmacol. 2018;54:245–53.
Hwang SH, Kwon SH, Kim SB, Lim SS. Inhibitory activities of Stauntonia hexaphylla Leaf constituents on rat lens aldose reductase and formation of advanced glycation end products and antioxidant. Biomed Res Int. 2017;2017:4273257.
Huang DW, Chang WC, Wu JSB, Shih RW, Shen SC. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutr Res. 2016;36(2):150–60.
Kittl M, Beyreis M, Tumurkhuu M, Furst J, Helm K, Pitschmann A, et al. Quercetin stimulates insulin secretion and reduces the viability of rat INS-1 beta-cells. Cell Physiol Biochem. 2016;39(1):278–93.
Zhang Y, Liu D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur J Pharmacol. 2011;670(1):325–32.
Kim OK, Jun W, Lee J. Effect of Cudrania tricuspidata and Kaempferol in endoplasmic reticulum stress-induced inflammation and hepatic insulin resistance in HepG2 cells. Nutrients. 2016;8(1):60–73.
Mehta V, Parashar A, Sharma A, Singh TR, Udayabanu M. Quercetin ameliorates chronic unpredicted stress-mediated memory dysfunction in male Swiss albino mice by attenuating insulin resistance and elevating hippocampal GLUT4 levels independent of insulin receptor expression. Horm Behav. 2017;89:13–22.
Sohretoglu D, Sari S, Barut B, Ozel A. Discovery of potent alpha-glucosidase inhibitor flavonols: insights into mechanism of action through inhibition kinetics and docking simulations. Bioorg Chem. 2018;79:257–64.
Guo XD, Zhang DY, Gao XJ, Parry J, Liu K, Liu BL, et al. Quercetin and quercetin-3-O-glucuronide are equally effective in ameliorating endothelial insulin resistance through inhibition of reactive oxygen species-associated inflammation. Mol Nutr Food Res. 2013;57(6):1037–45.
Wang HJ, Fowler MI, Messenger DJ, Terry LA, Gu XL, Zhou LX, et al. Homoisoflavonoids are potent glucose transporter 2 (GLUT2) inhibitors: a potential mechanism for the glucose-lowering properties of Polygonatum odoratum. J Agr Food Chem. 2018;66:3137–45.
Zhao H, Zhang Y, Guo Y, Shi S. Identification of major α-glucosidase inhibitors in Radix Astragali and its human microsomal metabolites using ultrafiltration HPLC–DAD–MSn. J Pharm Biomed Anal. 2015;104:31–7.
Yang J-R, Luo J-G, Kong L-Y. Determination of α-glucosidase inhibitors from Scut Scutellaria baicalensis using liquid chromatography with quadrupole time of flight tandem mass spectrometry coupled with centrifugal ultrafiltration. Chin J Nat Med. 2015;13(3):208–14.
He K, Song S, Zou Z, Feng M, Wang D, Wang Y, et al. The hypoglycemic and synergistic effect of loganin, morroniside, and ursolic acid isolated from the fruits of Cornus officinalis. Phytother Res. 2016;30(2):283–91.
Ramachandran V, Saravanan R. Glucose uptake through translocation and activation of GLUT4 in PI3K/Akt signaling pathway by asiatic acid in diabetic rats. Hum Exp Toxicol. 2015;34(9):884–93.
Zhou W, Tam KY, Meng M, Shan J, Wang S, Ju W, et al. Pharmacokinetics screening for multi-components absorbed in the rat plasma after oral administration of traditional Chinese medicine Flos Lonicerae Japonicae-Fructus Forsythiae herb couple by sequential negative and positive ionization ultra-high-performance liquid chromatography/tandem triple quadrupole mass spectrometric detection. J Chromatogr A. 2015;1376:84–97.
Konishi Y, Kobayashi S. Transepithelial transport of chlorogenic acid, caffeic acid, and their colonic metabolites in intestinal Caco-2 cell monolayers. J Agric Food Chem. 2004;52(9):2518–26.
Zeng H-J, Yang R, Guo C, Wang Q-W, Qu L-B, Li J-J. Pharmacokinetic study of six flavones in rat plasma and tissues after oral administration of ‘JiangYaBiFeng’ using SPE-HPLC–DAD. J Pharm Biomed Anal. 2011;56(4):815–9.
Schneider H, Schwiertz A, Collins MD, Blaut M. Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Arch Microbiol. 1999;171(2):81–91.
Boonpawa R, Moradi N, Spenkelink A, Rietjens IM, Punt A. Use of physiologically based kinetic (PBK) modeling to study interindividual human variation and species differences in plasma concentrations of quercetin and its metabolites. Biochem Pharmacol. 2015;98(4):690–702.
Mata-Bilbao Mde L, Andres-Lacueva C, Roura E, Jauregui O, Escribano E, Torre C, et al. Absorption and pharmacokinetics of green tea catechins in beagles. Br J Nutr. 2008;100(3):496–502.
Jia M-Q, Xiong Y-J, Xue Y, Wang Y, Yan C. Using UPLC-MS/MS for characterization of active components in extracts of Yupingfeng and application to a comparative pharmacokinetic study in rat plasma after oral administration. Molecules. 2017;22(5):810–27.