Simultaneous Removal of Soluble Metal Species and Nitrate from Acidic and Saline Industrial Wastewater in a Pilot-Scale Biofilm Reactor

Environmental Processes - Tập 8 - Trang 1481-1499 - 2021
Panagiota Mendrinou1, Artin Hatzikioseyian1, Pavlina Kousi1, Paschalis Oustadakis1, Petros Tsakiridis1, Emmanouella Remoundaki1
1School of Mining and Metallurgical Engineering, National Technical University of Athens (NTUA), Zografou, Greece

Tóm tắt

The hydrometallurgical treatment of waste printed circuit boards for the recovery of precious metals generates acidic wastewater containing nitrate, chloride and residual base metals. The scope of this work is the study of a biological treatment process for the concurrent metal sequestering, nitrate reduction and wastewater neutralization. A pilot-scale packed-bed biofilm reactor was set up, inoculated with the strain H. denitrificans and experimentally monitored. The range of operating parameters examined included: (a) nitrate concentration 750–5750 mg/L NO3−; (b) pH 3–8; (c) Cu, Ni, Zn and Fe at 50 mg/L and 100 mg/L; and (d) chloride concentration 5%–10% as NaCl. The presence of metals did not affect denitrification at the concentrations examined. H. denitrificans completely reduced nitrate and the intermediately produced nitrite at elevated chloride levels. Denitrification shifted pH towards circumneutral to alkaline values, where iron, zinc, copper and nickel were sequestered quantitatively from solution via bioprecipitation. The proposed simple, robust and low-cost biological treatment unit is advantageous compared to the conventional wastewater treatment, where metal precipitation is based on chemical neutralization and the problem of nitrate removal remains unresolved.

Tài liệu tham khảo

Baeseman JL, Smith RL, Silverstein J (2006) Denitrification potential in stream sediments impacted by acid mine drainage: effects of pH, various electron donors and iron. Microb Ecol 51(2):232–241. https://doi.org/10.1007/s00248-005-5155-z Cheng YF, Zhang Q, Li GF, Xue Y, Zheng XP, Cai S, Zhang ZZ, Jin RC (2019) Long-term effects of copper nanoparticles on granule-based denitrification systems: performance, microbial communities, functional genes and sludge properties. Bioresour Technol 289:121707. https://doi.org/10.1016/j.biortech.2019.121707 Constantin H, Fick M (1997) Influence of C-sources on the denitrification rate of a high-nitrate concentrated industrial wastewater. Water Res 31(3):583–589. https://doi.org/10.1016/S0043-1354(96)00268-0 Felgate H, Giannopoulos G, Sullivan MJ, Gates AJ, Clarke TA, Baggs E, Rowley G, Richardson DJ (2012) The impact of copper, nitrate and carbon status on the emission of nitrous oxide by two species of bacteria with biochemically distinct denitrification pathways. Environ Microbiol 14(7):1788–1800. https://doi.org/10.1111/j.1462-2920.2012.02789.x Fernández-Nava Y, Marañón E, Soons J, Castrillón L (2008) Denitrification of wastewater containing high nitrate and calcium concentrations. Bioresour Technol 99(17):7976–7981. https://doi.org/10.1016/j.biortech.2008.03.048 Flemming H-C (1995) Sorption sites in biofilms. Water Sci Technol 32(8):27–33. https://doi.org/10.2166/wst.1995.0256 Forti V, Baldé CP, Kuehr R, Bel G (2020) The global e-waste monitor 2020: quantities, flows and the circular economy potential. United Nations University (UNU)/United Nations Institute for training and research (UNITAR) – co-hosted SCYCLE Programme, international telecommunication union (ITU) & international solid waste association (ISWA), Bonn/Geneva/Rotterdam Gabaldón C, Izquierdo M, Martínez-Soria V, Marzal P, Penya-roja J-M, Javier Alvarez-Hornos F (2007) Biological nitrate removal from wastewater of a metal-finishing industry. J Hazard Mater 148(1):485–490. https://doi.org/10.1016/j.jhazmat.2007.02.071 Gadd GM (2002) Microbial interactions with metals/radionuclides: the basis of bioremediation. In: Keith-Roach MJ, Livens FR (eds) Interactions of microorganisms with radionuclides. Radioactivity in the environment, vol 2. Elsevier, Amsterdam, pp 179–203 González-Domenech CM, Martínez-Checa F, Béjar V, Quesada E (2010) Denitrification as an important taxonomic marker within the genus Halomonas. Syst Appl Microbiol 33(2):85–93. https://doi.org/10.1016/j.syapm.2009.12.001 Granger J, Ward BB (2003) Accumulation of nitrogen oxides in copper-limited cultures of denitrifying bacteria. Limnol Oceanogr 48(1):313–318. https://doi.org/10.4319/lo.2003.48.1.0313 Hirata A, Nakamura Y, Tsuneda S (2001) Biological nitrogen removal from industrial wastewater discharged from metal recovery processes. Water Sci Technol 44(2–3):171–179. https://doi.org/10.2166/wst.2001.0767 Holmes DE, Dang Y, Smith JA (2019) Nitrogen cycling during wastewater treatment. Adv Appl Microbiol 106:113–192. https://doi.org/10.1016/bs.aambs.2018.10.003 Işıldar A (2018) 10 - biotechnologies for metal recovery from electronic waste and printed circuit boards. In: Vegliò F, Birloaga I (eds) Waste Electrical and Electronic Equipment Recycling. Woodhead Publishing, pp. 241–269. https://doi.org/10.1016/B978-0-08-102057-9.00010-X Jacinthe PA, Tedesco LP (2009) Impact of elevated copper on the rate and gaseous products of denitrification in freshwater sediments. J Environ Qual 38(3):1183–1192. https://doi.org/10.2134/jeq2007.0666 Kim KK, Jin L, Yang HC, Lee S-T (2007) Halomonas gomseomensis sp. nov., Halomonas janggokensis sp. nov., Halomonas salaria sp. nov. and Halomonas denitrificans sp. nov., moderately halophilic bacteria isolated from saline water. Int J Syst Evol Microbiol 57(4):675–681. https://doi.org/10.1099/ijs.0.64767-0 Koren DW, Gould WD, Bédard P (2000) Biological removal of ammonia and nitrate from simulated mine and mill effluents. Hydrometallurgy 56(2):127–144. https://doi.org/10.1016/S0304-386X(99)00088-2 Kousi P, Remoundaki E, Hatzikioseyian A, Battaglia-Brunet F, Joulian C, Kousteni V, Tsezos M (2011) Metal precipitation in an ethanol-fed, fixed-bed sulphate-reducing bioreactor. J Hazard Mater 189(3):677–684. https://doi.org/10.1016/j.jhazmat.2011.01.083 Kousi P, Remoundaki E, Hatzikioseyian A, Tsezos M (2007) A study of the operating parameters of a sulphate-reducing fixed-bed reactor for the treatment of metal-bearing wastewater. Adv Mater Res 20-21:230–234. https://doi.org/10.4028/www.scientific.net/AMR.20-21.230 Lewis AE (2010) Review of metal sulphide precipitation. Hydrometallurgy 104(2):222–234. https://doi.org/10.1016/j.hydromet.2010.06.010 Lin Y-M, Tay J-H, Liu Y, Hung Y-T (2009) Biological nitrification and denitrification processes. In: Wang LK, Pereira NC, Hung Y-T (eds) Handbook of environmental engineering, Vol. 8: Biological treatment processes. Humana Press, Totowa, pp 539–588. https://doi.org/10.1007/978-1-60327-156-1_13 Magalhães C, Costa J, Teixeira C, Bordalo AA (2007) Impact of trace metals on denitrification in estuarine sediments of the Douro River estuary, Portugal. Mar Chem 107(3):332–341. https://doi.org/10.1016/j.marchem.2007.02.005 Matějů V, Čižinská S, Krejčí J, Janoch T (1992) Biological water denitrification-a review. Enzym Microb Technol 14(3):170–183. https://doi.org/10.1016/0141-0229(92)90062-S Mattila K, Zaitsev G, Langwaldt J (2007) Biological removal of nutrients from mine waters (final report). Finnish Forest Research Institute - Rovaniemi Unit, Rovaniemi Miao Y, Liao R, Zhang X-X, Liu B, Li Y, Wu B, Li A (2015) Metagenomic insights into salinity effect on diversity and abundance of denitrifying bacteria and genes in an expanded granular sludge bed reactor treating high-nitrate wastewater. Chem Eng J 277:116–123. https://doi.org/10.1016/j.cej.2015.04.125 Ochoa-Herrera V, León G, Banihani Q, Field JA, Sierra-Alvarez R (2011) Toxicity of copper(II) ions to microorganisms in biological wastewater treatment systems. Sci Total Environ 412-413:380–385. https://doi.org/10.1016/j.scitotenv.2011.09.072 Pang Y, Wang J (2021) Various electron donors for biological nitrate removal: a review. Sci Total Environ 794:148699. https://doi.org/10.1016/j.scitotenv.2021.148699 Papirio S, Ylinen A, Zou G, Peltola M, Esposito G, Puhakka JA (2014) Fluidized-bed denitrification for mine waters. Part I: low pH and temperature operation. Biodegradation 25(3):425–435. https://doi.org/10.1007/s10532-013-9671-0 Peyton BM, Mormile MR, Petersen JN (2001) Nitrate reduction with Halomonas campisalis: kinetics of denitrification at pH 9 and 12.5% NaCl. Water Res 35(17):4237–4242. https://doi.org/10.1016/S0043-1354(01)00149-X Ramírez JE, Rangel-Mendez JR, Limberger Lopes C, Gomes SD, Buitrón G, Cervantes FJ (2018) Denitrification of metallurgic wastewater: mechanisms of inhibition by Fe, Cr and Ni. J Chem Technol Biotechnol 93(2):440–449. https://doi.org/10.1002/jctb.5374 Remoudaki E, Hatzikioseyian A, Kousi P, Tsezos M (2003) The mechanism of metals precipitation by biologically generated alkalinity in biofilm reactors. Water Res 37(16):3843–3854. https://doi.org/10.1016/S0043-1354(03)00306-3 Remoundaki E, Hatzikioseyian A, Kaltsa F, Tsezos M (2003) The role of metal-organic complexes in the treatment of chromium containing effluents in biological reactors. In: Tsezos M, Remoudaki E, Hatzikioseyian A (eds) Biohydrometallurgy: A Sustainable Technology in Evolution, Proceedings of the International Biohydrometallurgy Symposium IBS 2003. National Technical University of Athens (NTUA), Athens, pp 711–718 Remoundaki E, Hatzikioseyian A, Tsezos M (2007) A systematic study of chromium solubility in the presence of organic matter: consequences for the treatment of chromium-containing wastewater. J Chem Technol Biotechnol 82(9):802–808. https://doi.org/10.1002/jctb.1742 Sakadevan K, Zheng H, Bavor HJ (1999) Impact of heavy metals on denitrification in surface wetland sediments receiving wastewater. Water Sci Technol 40(3):349–355. https://doi.org/10.1016/S0273-1223(99)00471-0 Sun Z, Lv Y, Liu Y, Ren R (2016) Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel metal resistant bacterium Cupriavidus sp. S1. Bioresour Technol 220:142–150. https://doi.org/10.1016/j.biortech.2016.07.110 Tavares P, Pereira AS, Moura JJG, Moura I (2006) Metalloenzymes of the denitrification pathway. J Inorg Biochem 100(12):2087–2100. https://doi.org/10.1016/j.jinorgbio.2006.09.003 Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69(4):2313–2320. https://doi.org/10.1128/AEM.69.4.2313-2320.2003 Tsezos M, Remoundaki E, Hatzikioseyian A (2007) Bioprocessing - principles and applications for metal immobilization from waste-water streams. In: Cox M, Negre P, Yurramendi L (eds) A guide book on the treatment of effluents from the mining/metallurgy, paper. Plating and Textile Industries. INASMET-Tecnalia, Spain, pp 233–246 Tuncuk A, Stazi V, Akcil A, Yazici EY, Deveci H (2012) Aqueous metal recovery techniques from e-scrap: hydrometallurgy in recycling. Miner Eng 25(1):28–37. https://doi.org/10.1016/j.mineng.2011.09.019 Tunsu C, Retegan T (2016) Chapter 6 - hydrometallurgical processes for the recovery of metals from WEEE. In: Cote G, Ekberg C, Nilsson M, Retegan T (eds) Chagnes A. Elsevier, WEEE Recycling, pp 139–175. https://doi.org/10.1016/B978-0-12-803363-0.00006-7 Ugurlu A, Ozturkcu SD (2018) Treatment of nitrocellulose industry watewaters by upflow denitrification filter: effect of packing media and recirculation. Environmental Processes 5(1):81–94. https://doi.org/10.1007/s40710-017-0282-3 van Hullebusch E, Zandvoort M, Lens P (2003) Metal immobilisation by biofilms: mechanisms and analytical tools. Rev Environ Sci Biotechnol 2(1):9–33. https://doi.org/10.1023/B:RESB.0000022995.48330.55 Vredenbregt LHJ, Nielsen K, Potma AA, Kristensen GH, Sund C (1997) Fluid bed biological nitrification and denitrification in high salinity wastewater. Water Sci Technol 36(1):93–100. https://doi.org/10.1016/S0273-1223(97)00341-7 Wang L, Shao Z (2021) Aerobic denitrification and heterotrophic sulfur oxidation in the genus Halomonas revealed by six novel species characterizations and genome-based analysis. Front Microbiol 12:652766. https://doi.org/10.3389/fmicb.2021.652766 Wang T, Zhang L, Bo L, Zhu Y, Tang X, Liu W (2019) Simultaneous heterotrophic nitrification and aerobic denitrification at high concentrations of NaCl by Halomonas bacteria. IOP Conference Series: Earth and Environmental Science 237:052033. https://doi.org/10.1088/1755-1315/237/5/052033 Ward MH, Jones RR, Brender JD, de Kok TM, Weyer PJ, Nolan BT, Villanueva CM, van Breda SG (2018) Drinking water nitrate and human health: an updated review. Int J Env Res Public Health 15(7):1557. https://doi.org/10.3390/ijerph15071557 Woolfenden HC, Gates AJ, Bocking C, Blyth MG, Richardson DJ, Moulton V (2013) Modeling the effect of copper availability on bacterial denitrification. MicrobiologyOpen 2(5):756–765. https://doi.org/10.1002/mbo3.111 Yang PY, Nitisoravut S, Wu JS (1995) Nitrate removal using a mixed-culture entrapped microbial cell immobilization process under high salt conditions. Water Res 29(6):1525–1532. https://doi.org/10.1016/0043-1354(94)00296-J Yoshie S, Noda N, Miyano T, Tsuneda S, Hirata A, Inamori Y (2002) Characterization of microbial community in nitrogen removal process of metallurgic wastewater by PCR-DGGE. Water Sci Technol 46(11–12):93–98. https://doi.org/10.2166/wst.2002.0722 Yoshie S, Noda N, Tsuneda S, Hirata A, Inamori Y (2004) Salinity decreases nitrite reductase gene diversity in denitrifying bacteria of wastewater treatment systems. Appl Environ Microbiol 70(5):3152–3157. https://doi.org/10.1128/AEM.70.5.3152-3157.2004 You Q-G, Wang J-H, Qi G-X, Zhou Y-M, Guo Z-W, Shen Y, Gao X (2020) Anammox and partial denitrification coupling: a review. RSC Adv 10(21):12554–12572. https://doi.org/10.1039/D0RA00001A Zhang N, Chen H, Lyu Y, Wang Y (2019) Nitrogen removal by a metal-resistant bacterium, pseudomonas putida ZN1, capable of heterotrophic nitrification-aerobic denitrification. J Chem Technol Biotechnol 94(4):1165–1175. https://doi.org/10.1002/jctb.5863 Zhao S, Su X, Wang Y, Yang X, Bi M, He Q, Chen Y (2020) Copper oxide nanoparticles inhibited denitrifying enzymes and electron transport system activities to influence soil denitrification and N2O emission. Chemosphere 245:125394. https://doi.org/10.1016/j.chemosphere.2019.125394 Zheng X, Su Y, Chen Y, Wan R, Liu K, Li M, Yin D (2014) Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity. Environ Sci Technol 48(23):13800–13807. https://doi.org/10.1021/es504251v Zhu IX, Liu JR (2017) Effects of salinity on biological nitrate removal from industrial wastewater. In: Zhu IX (ed) Nitrification and Denitrification IntechOpen https://doi.org/10.5772/intechopen.69438 Zou G, Papirio S, van Hullebusch ED, Puhakka JA (2015) Fluidized-bed denitrification of mining water tolerates high nickel concentrations. Bioresour Technol 179:284–290. https://doi.org/10.1016/j.biortech.2014.12.044 Zou G, Papirio S, Ylinen A, Di Capua F, Lakaniemi AM, Puhakka JA (2014) Fluidized-bed denitrification for mine waters. Part II: effects of Ni and co. Biodegradation 25(3):417–423. https://doi.org/10.1007/s10532-013-9670-1 Zou G, Ylinen A, Di Capua F, Papirio S, Lakaniemi AM, Puhakka J (2013) Impact of heavy metals on denitrification of simulated mining wastewaters. Adv Mater Res 825:500–503. https://doi.org/10.4028/www.scientific.net/amr.825.500