Simultaneous Reconstruction of the Complex Refractive Index and the Particle Size Distribution Function from Lidar Measurements: Testing the Developed Algorithms

Atmospheric and Oceanic Optics - Tập 32 Số 6 - Trang 628-642 - 2019
С. В. Самойлова1
1V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

L. A. Remer, Y. J. Kaufman, D. Tanre, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levi, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62, 947–973 (2005).

D. Tanre, F. M. Breon, J. L. Deuse, O. Dubovik, F. Ducos, P. Francois, P. Goloub, M. Herman, A. Lifermann, and F. Waquet, “Remote sensing of aerosol by using polarized, directional and spectral measurements within the A-Train: The PARASOL mission,” Atmos. Meas. Tech. Discuss. 4, 2037–2069 (2011).

D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, “Overview of the CALIPSO Mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26, 2310–2323 (2009).

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).

O. V. Dubovik, T. V. Lapyonok, and S. L. Oshchepkov, “Improved technique for data inversion: Optical sizing of multicomponent aerosols,” Appl. Opt. 34, 8422–8436 (1995).

O. V. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105, 20 673–20 696 (2000).

J. Bosenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Bockmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hagard, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European aerosol research lidar network,” in Advances in Laser Remote Sensing, Ed. by A. Dabas, C. Loth, and J. Pelon (Editions de L’Ecole Polytechnique, 2000), p. 155–158.

T. Murayama, N. Sugimoto, I. Uno, K. Kinoshita, K. Aoki, N. Hagiwara, Z. Liu, I. Matsui, T. Sakai, T. Shibata, K. Arao, B.-J. Sohn, J.-G. Won, S.-C. Yoon, T. Li, J. Zhou, H. Hu, M. Abo, K. Iokibe, R. Koga, and Y. Iwasaka, “Ground-based network observation of Asian dust events of April 1998 in East Asia,” J. Geophys. Res. 106, 18 345–18 359 (2001).

A. P. Chaikovsky, A. P. Ivanov, Yu. S. Balin, A. V. Elnikov, G. F. Tulinov, I. I. Plusnin, O. A. Bukin, and B. B. Chen, “CIS-LiNet—lidar network for monitoring aerosol and ozone in CIS regions,” in Reviewed and Revised Papers Presented at the 23d ILRC, Ed. by C. Nagasava and N. Sugimoto (Nara, Japan, 2006), p. 671–672.

J. Bosenberg and R. M. Hoff, Plan for the Implementation of the GAW Aerosol Lidar Observation Network GALION (WMO, 2007), no. 1443.

S. P. Burton, E. Chemyakin, X. Liu, K. Knobelspiesse, S. Stamnes, P. Sawamura, R. H. Moore, C. A. Hostetler, and R. A. Ferrare, “Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals,” Atmos. Meas. Tech 9, 5555–5574 (2016).

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D' Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: Towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).

S. V. Samoilova and Yu. S. Balin, “Reconstruction of the aerosol optical parameters from the data of sensing with a multifrequency raman lidar,” Appl. Opt. 47, 6816–6831 (2008).

K. Willeke and K. T. Whitby, “Atmospheric aerosol: Size distribution interpretation,” J. Air Poll. Control Assoc. 25, 529–534 (1975).

J. T. Twitty, “The inversion of aureole measurements to derive aerosol size distributions,” J. Atmos. Sci. 32, 584–591 (1975).

G. I. Gorchakov, I. A. Gorchakova, E. A. Lykosov, V. G. Tolstobrov, and L. S. Turovtseva, “Determination of the smoke have refractive index and microstructure,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 12 (6), 612–619 (1976).

V. V. Veretennikov, I. E. Naats, M. V. Panchenko, and V. Ya. Fadeev, “Determination of the smoke have refractive index and microstructure from polarization characteristics of light scattering,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 14 (12), 1313–1317 (1978).

V. V. Veretennikov, V. S. Kozlov, I. E. Naats, and V. Ya. Fadeev, “Optical studies of smoke aerosol: An inversion method and its applications,” Opt. Lett. 4, 411–413 (1979).

V. E. Zuev and I. E. Naats, Inverse Problems of Laser Sounding (Nauka, Novosibirsk, 1982) [in Russian].

R. F. Rakhimov, V. S. Kozlov, M. V. Panchenko, A. G. Tumakov, and V. P. Shmargunov, “Properties of atmospheric aerosol in smoke plumes from forest fires according to spectronephelometer measurements,” Atmos. Ocean. Opt. 27 (3), 275–282 (2014).

E. V. Makienko, R. F. Rakhimov, Yu. A. Pkhalagov, and V. N. Uzhegov, “Microphysical interpretation of the anomalous spectral behavior of aerosol extinction along a ground path,” Atmos. Ocean. Opt. 16 (12), 1008–1012 (2003).

V. V. Veretennikov, ”Simultaneous determination of aerosol microstructure and refractive index from sun photometry data,” Atmos. Ocean. Opt. 20 (3), 192–199 (2007).

V. V. Veretennikov, ”Retrieval of microstructure parameters of coarse-mode aerosol using their regression relationships with spectral extinction of light in the IR,” Atmos. Ocean. Opt. 30 (6), 554–563 (2017).

T. V. Bedareva, M. A. Sviridenkov, and T. B. Zhuravleva, “Retrieval of aerosol optical and microphysical characteristics according to data of ground-based spectral measurements of direct and scattered solar radiation. Part 1. Testing of algorithm,” Atmos. Ocean. Opt. 26 (1), 24–34 (2013).

F. C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc, New York, 1983).

D. Muller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Theory,” Appl. Opt. 38, 2346–2357 (1999).

C. Bockmann, “Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distribution,” Appl. Opt. 40, 1329–1342 (2001).

C. Bockmann, I. Mironova, D. Muller, L. Schneidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A 22 (3), 518–528 (2005).

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Muller, K.  Franke, and D. M. Whiteman, “Inversion of multiwavelength raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180–1195 (2004).

I. Veselovski, A. Kolgotin, D. Muller, and D. M. Whiteman, “Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis,” Appl. Opt. 44, 5292–5303 (2005).

A. Kolgotin and D. Muller, “Theory of inversion with two-dimensional regularization: Profiles of microphysical particle properties derived from multiwavelength lidar measurements,” Appl. Opt. 47, 4472–4490 (2008).

A. H. Omar, D. M. Winker, M. A. Vaughan, Y. Hu, Ch. H. Trepte, R. A. Ferrare, K.-P. Lee, Ch. A. Hostetler, Ch. Kittaka, R. R. Rogers, R. E. Kuehn, and Zh. Lie, “The CALIPSO automated aerosol classification and lidar ratio selection algorithm,” J. Atmos. Ocean. Technol 26 (10), 1994–2014 (2009).

I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D. M. Whiteman, M. Mishchenko, and D. Tanre, “Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements,” J. Geophys. Res. 115, D21203 (2010).

I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. N. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech 5, 1135–1145 (2012).

D. Muller, I. Veselovskii, A. Kolgotin, M. Tesche, A. Ansmann, and O. Dubovik, “Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength raman/polarization lidar data and comparison to AERONET retrievals and in situ observations,” Appl. Opt. 52, 3178–3202 (2013).

J. Wagner, A. Ansmann, U. Wandinger, P. Seifert, A. Chwarz, M. Tesche, A. Chaikovsky, and O. Dubovik, “Evaluation of the Lidar/Radiometer Inversion Code (LIRIC) to determinate microphysical properties of volcanic and desert dust,” Atmos. Meas. Tech. 6, 1707–1724 (2013).

E. Chemyakin, D. Muller, Sh. Burton, A. Kolgotin, Ch. Hostetler, and R. Ferrare, “Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data,” Appl. Opt. 53, 7252–7266 (2014).

E. Chemyakin, S. Burton, A. Kolgotin, D. Muller, C. Hostetler, and R. Ferrare, “Retrieval of aerosol parameters from multiwavelength lidar: Investigation of the underlying inverse mathematical problem,” Appl. Opt. 5, 2188–2202 (2016).

M. Kahnert and E. Andersson, “How much information do extinction and backscattering measurements contain about the chemical composition of atmospheric aerosol?,” Atmos. Chem. Phys. 17, 3423–3444 (2017).

M. D. Alexandrov and M. I. Mishchenko, “Information content of bistatic lidar observations of aerosols from space,” Opt. Express. 25 (4), A134–A150 (2017).

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic Press, San Diego, CA, USA, 2000).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, United Kingdom, 2002).

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorikin, and I. Slutsker, “Application of spheroid momels to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).

S. V. Samoilova, M. A. Sviridenkov, and I. E. Penner, “Retrieval of the particle size distribution funcion from the data of lidar sensing under the assumption of known refractive index,” Appl. Opt. 55, 8022–8029 (2016).

S. V. Samoilova, “Retrieval of complex refractive index from lidar measurements: possibilities and limitations,” Opt. Atmos. Okeana 27 (3), 197–206 (2014).

S. V. Samoilova, I. E. Penner, G. P. Kokhanenko, and Yu. S. Balin, “Simultaneous reconstruction of two microphysical aerosol characteristics from the lidar data,” J. Quant. Spectrosc. Radiat. Transfer 222–223, 35–44 (2019).

Ch. Verhaege, V. Shcherbakov, and P. Personne, “Limitations on retrieval of complex refractive index of spherical particles from scattering measurements,” J. Quant. Spectrosc. Radiat. Transfer 109, 2338–2348 (2008).

Ch. Verhaege, V. Shcherbakov, and P. Personne, “Retrieval of complex refractive index and size distribution of spherical particles from dual-polarization polar nephelometer data,” J. Quant. Spectrosc. Radiat. Transfer 110, 1690–1697 (2009). https://doi.org/10.1016/j.jqsrt.2009.01.004

A. Lopatin, O. Dubovik, A. Chaikovsky, P. Goloub, T. Lapyonok, D. Tanre, and P. Litvinov, “Enhancement of aerosol characterization using synergy of lidar and sun-photometer coincident observations: The GARRLiC algorithm,” Atmos. Meas. Tech. 6, 2065–2088 (2013).

A. Chaikovsky, O. Dubovik, B. Holben, A. Bril, Ph. Goloub, D. Tanre, G. Pappalardo, U. Wandinger, L. Chaikovskaya, S. Denisov, J. Grudo, A. Lopatin, Ya. Karol, T. Lapyonok, V. Amiridis, A. Ansmann, and A. Apituley, L. Allados-Arboledas, I. Binietoglou, A. Boselli, G. D’Amico, V. Freudenthaler, D. Giles, M. J. Granados-Munoz, P. Kokkalis, D. Nicolae, S. Oshchepkov, A. Papayannis, M. R. Perrone, A. Pietruczuk, F. Rocadenbosch, M. Sicard, I. Slutsker, C. Talianu, Tomasi De, Tsekeri F., Wagner A., and X. Wang, “Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: Development and distribution in EARLINET,” Atmos. Meas. Tech. 9, 1181–1205 (2016). https://doi.org/10.5194/amt-9-1181-2016

A. N. Tikhonov and V. Ya. Arsenin, Methods for Solution of Incorrect Problems (Nauka, Moscow, 1986) [in Russian].

G. I. Vasilenko, Signal Retrieval Theory (Sovetskoe radio, Moscow, 1979) [in Russian].

S. Samoilova, M. Sviridenkov, I. Penner, G. Kokhanenko, and Yu. Balin, “Retrieval of the tropospheric aerosol microphysical characteristics from the data of multifrequency lidar sensing,” EPJ Web Conf. 2018. 28th Laser Radar Conf. 176. https://doi.org/10.1051/epjconf/201817605055. Cited June 28, 2019).

T. V. Bedareva, M. A. Sviridenkov, and T. B. Zhuravleva, “Retrieval of aerosol optical and microphysical characteristics according to data from ground-based spectral measurements of direct and diffuse solar radiation. Part 2. Algorithm testing,” Atmos. Ocean. Opt. 26 (2), 107–117 (2013).