Simultaneous Localization and Mapping in the Epoch of Semantics: A Survey

Muhammad Sualeh1, Gon–Woo Kim1
1Intelligent Robotics Laboratory, Control and Robotics Engineering Department, Chungbuk National University, Cheongju, Chungbuk, Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

H. F. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping (SLAM): Part I,” IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99–110, June 2006.

G. Younes, D Asmar, E. Shammas, and J. Zelek, “Keyframe-based monocular SLAM: design, survey, and future directions,” Robotics and Autonomous Systems, vol. 98, pp. 67–88, 2017.

S. Saeedi, M. Trentini, M. Seto, and H. Li, “Multiple-robot simultaneous localization and mapping: A review,” Journal of Field Robotics, vol. 33, no. 1, pp. 3–46, 2016.

C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, J. Leonard, “Past, present, and future of simultaneous localization and mapping: toward the robust perception age,” IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual SLAM algorithms: a survey from 2010 to 2016,” IPSJ Transactions on Computer Vision and Applications, vol. 9, no. 16, pp. 1–16, June 2017.

S. Thrun and J. J. Leonard, “Simultaneous localization and mapping,” Springer Handbook of Robotics, B. Siciliano and O. Khatib, 2nd ed. New York, USA, ch. 46, pp. 1153–1176, 2016.

S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, MIT press, 2005.

T. Bailey and H. F. Durrant-Whyte, “Simultaneous localization and mapping (SLAM): Part II,” IEEE Robotics & Automation Magazine, vol. 13, no. 3, pp. 108–117, 2006.

J. Steckel and H. Peremans, “Spatial sampling strategy for a 3D sonar sensor supporting BatSLAM,” Proc. of IEEE International Conference on Intelligent Robotic Systems, pp. 723–728, 2015.

T. J. Chong, X. J. Tang, C. H. Leng, M. Yogeswaran, O. E. Ng, and Y. Z. Chong, “Sensor technologies and simultaneous localization and mapping (SLAM),” Procedia Computer Science, vol. 76, pp. 174–179, 2015.

R. C. Smith and P. Cheeseman, “On the representation and estimation of spatial uncertainty,” International Journal of Robotics Research, vol. 5, no. 4, pp. 56–68, 1986.

R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial relationships in robotics,” Autonomous Robot Vehicles, pp.167-193, 1990.

J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam: realtime single camera SLAM,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 6, pp.1052-1067, 2007.

G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 2432–2437, 2005.

G. Grisetti, C. Stachniss and W. Burgard, “Improved techniques for grid mapping with Rao-Blackwellized particle filters,” IEEE Transactions on Robotics, vol. 23, no. 1, pp. 34–46, 2007.

H. Strasdat, J. M. M. Montiel, and A. J. Davison, “Visual slam: Why filter?,” Image and Vision Computing, vol. 30, no. 2, pp. 65–77, 2012.

P. Moutarlier and R. Chatila, “An experimental system for incremental environment modeling by an autonomous mobile robot,” Proc. of International Symposium on Experimental Robotics, pp. 327–346, 1989.

P. Moutarlier and R. Chatila, “Stochastic multisensory data fusion for mobile robot location and environment modeling,” Proc. of International Symposium on Robotics Research, pp. 85–94, 1989.

J. A. Castellanos, J. M. M. Montiel, J. Neira, and J. D. Tardo, “The SPmap: A probabilistic framework for simultaneous localization and map building,” IEEE Transactions on Robotics and Automation, vol. 15, no. 5, pp. 948–953, 1999.

J. Guivant and E. Nebot, “Optimization of the simultaneous localization and map building algorithm for real time implementation,” IEEE Transactions on Robotics and Automation, vol. 17, no. 3, pp. 242–257, 2001.

S. Thrun, D. Koller, Z. Ghahramani, H. Durrant-Whyte, and A. Y. Ng, “Simultaneous mapping and localization with sparse extended information filters,” The International Journal of Robotics Research, vol. 23, no. 7–8, pp. 693–716, 2004.

M. Paz, J. D. Tardos, and J. Neira, “Divide and conquer: EKF slam in o(n),” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1107–1120, 2008.

J. C. Cox, “A review of statistical data association techniques for motion correspondence,” International Journal of Computer Vision, vol. 10, no. 1, pp. 53–66, 1993.

G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba, “A solution to the simultaneous localization and map building (SLAM) problem,” IEEE Transactions on Robotics and Automation, vol. 17, no. 3, pp. 229–241, 2001.

L. Pedraza, D. Rodriguez-Losada, F. Matia, G. Dissanayake, and J. Miro, “Extending the limits of f-based slam with B-splines,” IEEE Transactions on Robotics, vol. 25, no. 2, pp. 353–366, 2009.

A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo Methods in Practice, Springer-Verlag, New York, 2001.

J. Liu and R. Chen, “Sequential monte carlo methods for dynamic systems,” Journal of the American Statistical Association, vol. 93, no. 443, pp. 1032–1044, 1998.

D. Hahnel, D. Fox, W. Burgard, and S. Thrun, “A highly efficient FastSLAM algorithm for generating cyclic maps of large-scale environments from raw laser range measurements,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 206–211, 2003.

M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges,” Proc. of International Joint Conference on Artificial Intelligence (IJCAI), pp. 1151–1156, August 2003.

M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: a factored solution to the simultaneous localization and mapping problem,” Proceedings of the AAAI National Conference on Artificial Intelligence, pp. 593–598, 2002.

S. Thrun, M. Montemerlo, D. Koller, B. Wegbreit, J. Nieto, and E. Nebot, “FastSLAM: an efficient solution to the simultaneous localization and mapping problem with unknown data association,” Journal of Machine Learning Research, vol. 4, no. 3, pp. 380–407, 2004.

G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based SLAM,” IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4, pp. 31–43, 2010.

R. Havangi, M. A. Nekoui, and M. Teshnehlab, “An optimization based method for simultaneous localization and mapping,” International Journal of Control Automation and Systems, vol. 12, no. 4, pp. 823–832, 2014.

F. Dellaert and M. Kaess, “Square root SAM: Simultaneous localization and mapping via square root information smoothing,” International Journal of Robotics Research, vol. 25, no. 12, pp. 1181–1203, 2006.

J. Folkesson and H. Christensen, “Graphical SLAM for outdoor applications,” Journal of Field Robotics, vol. 23, no. 1, pp. 51–70, 2006.

G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A tree parameterization for efficiently computing maximum likelihood maps using gradient descent,” Robotics: Science and Systems, pp. 65–72, 2007.

M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert, “iSAM2: incremental smoothing and mapping using the Bayes tree,” International Journal of Robotics Research, vol. 31, no. 2, pp. 217–236, 2012.

E. Olson, J. J. Leonard, and S. Teller, “Fast iterative alignment of pose graphs with poor initial estimates,” Proc. of IEEE International Conference on Robotics and Automation, pp. 2262–2269, 2006.

S. Thrun and M. Montemerlo, “The GraphSLAM algorithm with applications to Large-Scale mapping of urban structures,” International Journal of Robotics Research, vol. 25, no. 5–6, pp. 403–430, 2005.

F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 498–519, 2001.

F. Lu and E. Milios, “Globally consistent range scan alignment for environment mapping,” Autonomous Robots, vol. 4, no. 4, pp. 333–349, 1997.

B. D. Lucas, T. Kanade, “An iterative image registration technique with an application to stereo vision,” Proc. of International Joint Conference on Artificial Intelligence, pp. 674–679, 1981.

S. Baker and I. Matthews, “Lucas-Kanade 20 years on: a unifying framework,” International Journal of Computer Vision, vol. 56, no. 3, pp. 221–255, 2004.

S. Gargoum and K. El-Basyouny, “Automated extraction of road features using LiDAR data: A review of LiDAR applications in transportation,” Proc. of International Conference on Transportation Information and Safety (ICTIS), pp. 563–574, 2017.

P. R. Beaudet, “Rotationally invariant image operators,” Proc. of International Conference on Pattern Recognition, vol. 15, no. 50, pp. 10–52, 1978.

C. Harris and M. Stephens, “A combined corner and edge detector,” Proc. of Fourth Alvey Vision Conference, pp. 147–151, 1988.

J. Shi and C. Tomasi, “Good fs to track, computer vision and pattern recognition,” Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 593–600, 1994.

T. Lindeberg, “F detection with automatic scale selection,” International Journal of Computer Vision, vol. 30, no. 2, pp. 79–116, 1998.

J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide baseline stereo from maximally stable extremal regions,” Image and vision computing, vol. 22, no. 10, pp. 761–767, 2004.

D. G. Lowe, “Distinctive image features from scaleinvariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger, “Adaptive and generic corner detection based on the accelerated segment test,” Proc. of European Conference on Computer Vision, pp. 183–196, 2010.

M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, P. Fua, “Brief: computing a local binary descriptor very fast,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 7, pp. 1281–98, 2012.

S. Leutenegger, M. Chli, R. Y. Siegwart, “Brisk: Binary robust invariant scalable keypoints,” Proc. of IEEE International Conference on Computer Vision, pp. 2548–2555, 2011.

H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speededup robust fs (SURF),” Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–359, 2008.

D. Lowe, “Object recognition from local scale-invariant features,” Proc. of International Conference on Computer Vision, pp. 1150–1157, 1999.

N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893, 2005.

Alahi R. Ortiz, and P. Vandergheynst, “Freak: fast retina keypoint,” Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–517, 2012.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an efficient alternative to SIFT or SURF,” International Conference on Computer Vision, pp. 2564–2571, 2011.

P. Moreels and P. Perona, “Evaluation of fs detectors and descriptors based on 3D objects,” International Journal of Computer Vision, vol. 73, no. 3, pp. 263–284, 2007.

J. Hartmann, J. H. Klussendorff, and E. Maehle, “A comparison of feature descriptors for visual SLAM,” Proc. of European Conference on Mobile Robots, pp. 56–61, 2013.

I. Rey-Otero, M. Delbracio, and J. Morel, “Comparing feature detectors: a bias in the repeatability criteria, and how to correct it,” Proc. of IEEE International Conference on Image Processing (ICIP), pp. 3024–3028, 2015.

Hietanen J. Lankinen, J.-K. Kämäräinen, A. G. Buch, and N. Krüger, “A comparison of feature detectors and descriptors for object class matching,” Neurocomputing, vol. 184, pp. 3–12, December 2015.

F. Perronnin, J. Sanchez, and T. Mensink, “Improving the Fisher kernel for large-scale image classification,” Proc. of European Conference on Computer Vision (ECCV), pp. 143–156, 2010.

G. Csurka, C. Dance, L. Fan, J. Williamowski, and C. Bray, “Visual categorization with bags of keypoints,” Workshop on Statistical Learning in Computer Vision, pp. 59–74, 2004.

F. Perronnin and C. Dance, “Fisher kernels on visual vocabularies for image categorization,” Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8, 2007.

H. Jegou, M. Douze, C. Schmid, and P. Perez, “Aggregating local descriptors into a compact image representation,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3304–3311, 2010.

R. Arandjelovic and A. Zisserman, “All about VLAD,” Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1578–1585, 2013.

A. Oliva and A. Torralba, “Modeling the shape of the scene: a holistic representation of the spatial envelope,” International Journal of Computer Vision, vol. 42, no. 3, pp. 145–175, 2001.

Y. Xia, J. Li, L. Qi, and H. Fan, “Loop closure detection for visual SLAM using PCANet features,” Proc. of International Joint Conference on Neural Networks (IJCNN), pp. 2274–2281, 2016.

X. Gao and T. Zhang, “Loop closure detection for visual slam systems using deep neural networks,” Proc. of 34th Chinese Control Conference (CCC), pp. 5851–5856, July 2015.

R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and A. J. Davison, “SLAM++: simultaneous localization and mapping at the level of objects,” Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1352–1359, 2013.

N. Neverova, P Luc, C. Couprie, J. Verbeek, and Y. LeCun, “Predicting deeper into the future of semantic segmentation,” Proc. of IEEE International Conference on Computer Vision (ICCV), pp. 1–10, 2017.

R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “G2O: a general framework for graph optimization,” Proc. of IEEE International Conference on Robotics Automation, pp. 3607–3613, 2011.

F. Dellaert, Factor Graphs and GTSAM: A Hands-on Introduction, Georgia Institute of Technology, 2012.

G. Grisetti, R. Kummerle, C. Stachniss, U. Frese, and C. Hertzberg, “Hierarchical optimization on manifolds for online 2d and 3d mapping,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 273–278, 2010.

S. Agarwal and K. Mierle, “Ceres solver,” http://ceressolver.org, 2012.

L. Polok, V. Ila, M. Solony, P. Smrz, and P. Zemcik, “Incremental block cholesky factorization for nonlinear least squares in robotics,” Robotics: Science and Systems, pp. 328–336, 2013.

I. Nowak, and S. Vigerske, LaGO-Lagrangian Global Optimizer, 2003.

N. Sünderhauf, T. T. Pham, Y. Latif, M. Milford, and I. Reid, “Meaningful Maps Object-Oriented Semantic Mapping,” Proc. of International Conference on Intelligent Robots and Systems (IROS), pp. 5079–5085, 2017.

J. Stuckler, B. Waldvogel, H. Schulz, and S. Behnke, “Dense real-time mapping of object-class semantics from RGB-D video,” Journal of Real-Time Image Processing, vol. 10, no. 4, pp. 599–609, 2015.

S. L. Bowman, N. Atanasov, K. Daniilidis, and G. J. Pappas, “Probabilistic data association for semantic slam,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 1722–1729, 2017.

V. Vineet, O. Miksik, M. Lidegaard, M. Niebner, S. Golodetz, V. A. Prisacariu, O. Kähler, D. W. Murray, S. Izadi, P. Pérez, and P. H. Torr, “Incremental dense semantic stereo fusion for large-scale semantic scene reconstruction,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 75–82, 2015.

S. Pillai and J. Leonard, “Monocular SLAM supported object recognition,” Robotics Science and Systems Conference, pp. 310–319, 2015.

L. Ma and G. Sibley, “Unsupervised dense object discovery, detection, tracking and reconstruction,” Proc. of European Conference on Computer Vision, pp. 80–95, 2014.

T. Dharmasiri, V. Lui, and T. Drummond, “MO-SLAM: multi object SLAM with run-time object discovery through duplicates,” Proc. of International Conference on Intelligent Robots and Systems (IROS), pp. 1214–1221, 2016.

S. Choudhary, A. J. B. Trevor, H. I. Christensen, and F. Dellaert, “SLAM with object discovery, modeling and mapping,” Proc. of International Conference on Intelligent Robots and Systems, pp. 1018–1025, 2014.

D. Kochanov, A. Ošep, J. Stückler, and B. Leibe, “Scene flow propagation for semantic mapping and object discovery in dynamic street scenes,” International Conference on Intelligent Robots and Systems (IROS), pp. 1785–1792, 2016. 0.1109/IROS.2016.7759285

J. McCormac, A. Handa, A. Davison, and S. Leutenegger, “Semanticfusion: dense 3D semantic mapping with convolutional neural networks,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 4628–4635, 2017.

S. Yang, Y. Song, M. Kaess, and S. Scherer, “Pop-up SLAM: semantic monocular plane SLAM for low-texture environments,” Proc. of International Conference on Intelligent Robots and Systems (IROS), pp. 1222–1229, 2016.

A. Gawel, C. D. Don, R. Siegwart, J. Nieto, and C. Cadena, “X-View: graph-based semantic multi-view localization,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1687–1694, 2017.

K. Tateno, F. Tombari, I. Laina, and N. Navab, “CNNSLAM: real-time dense monocular SLAM with learned depth prediction,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6565–6574, 2017.

C. Zhao, L. Sun, and R. Stolkin, “A fully end-to-end deep learning approach for real-time simultaneous 3D reconstruction and material recognition,” Proc. of International Conference on Advanced Robotics (ICAR), pp. 75–82, 2017.

S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H. Torr, “Conditional random fields as recurrent neural networks,” Proc. of IEEE International Conference on Computer Vision, pp. 1529–1537, 2015.

A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt, “BundleFusion: real-time globally consistent 3D reconstruction using on-the-fly surface re-integration,” ACM Transactions on Graphics (TOG), vol. 36, no. 3, pp. 24, 2017.

S. Choudhary, L. Carlone, C. Nieto, J. Rogers, Z. Liu, H. I. Christensen, and F. Dellaert, “Multi robot objectbased SLAM,” International Symposium on Experimental Robotics, pp. 729–741, 2016.

G. Pascoe, W. Maddern, M. Tanner, P. Piniés, and P. Newman, “NID-SLAM: robust monocular SLAM using normalized information distance,” Proc. of Conference on Computer Vision and Pattern Recognition, pp. 1446–1455, 2017.

R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORBSLAM: a versatile and accurate monocular SLAM system,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: an opensource SLAM system for monocular, stereo and RGB-D cameras,” IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2016.

S. Yang, Y. Song, M. Kaess, and S. Scherer, “Pop-up SLAM: semantic monocular plane SLAM for low texture environments,” Proc. of IEEE International Conference on Intelligent Robotic Systems, pp. 1222–1229, 2016.

T. Pire, T. Fischer, G. Castro, P. D. Cristóforis, J. Civera, and J. J. Berlles, “S-PTAM: stereo parallel tracking and mapping,” Robotic Autonomous Systems, vol. 93, pp. 27–42, 2017.

M. Klingensmith, S. S. Sirinivasa, and M. Kaess, “Articulated robot motion for simultaneous localization and mapping (ARM-SLAM),” IEEE Robotic Automation Letters, vol. 1, no.2, pp. 1156–1163, 2016.

J. J. Tarrio and S. Pedre, “Realtime edge-based visual odometry for a monocular camera,” Proc. of IEEE International Conference on Computer Vision, pp. 702–710, 2016.

H. Liu, G. Zhang, and H. Bao, “Robust keyframe-based monocular SLAM for augmented reality,” Proc. of IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 1–10, 2016.

C. Qu and G. Cross, “AprilSLAM -mapping and localization from AprilTags,” Kumar Robotics (www. kumarrobotics.org), 2015.

L. Silveira, F. Guth, P. Drews-Jr, P. Ballester, M. Machado, F. Codevilla, N. Duarte-Filho, and S. Botelho, “An open-source bio-inspired solution to underwater SLAM,” IFAC-Papers OnLine, vol. 28, no. 2, pp. 212–217, 2015.

T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and A. J. Davison, “ElasticFusion: dense SLAM without a pose graph,” Robotics: Science and Systems Conference (RSS), pp. 1697–1716, July 2015.

E. D. Nerurkar, K. J. Wu, and S. I. Roumeliotis, “CKLAM: constrained keyframe-based localization and mapping,” Proc. of IEEE International Conference Robotic Automation, pp. 3638–3643, 2014.

H. C. Daniel, K. Kim, J. Kannala, K. Pulli, and J. Heikkilä, “DT-SLAM: deferred triangulation for robust SLAM,” Proc. of International Conference on 3D Vision, pp. 609–616, 2014.

J. Engel and D. Cremers, “Large-scale direct SLAM with stereo cameras,” Proc. of IEEE/RSJ International Conference on Intelligent Robotic Systems Hamburg, pp. 1935–1942, 2015.

J. Engel, T. Schoeps, and D. Cremers, “LSD-SLAM: large-scale direct monocular SLAM,” Proc. of European Conference on Computer Vision, pp. 834–849, 2014.

M. Pizzoli, C. Forster, and D. Scaramuzza, “REMODE: probabilistic, monocular dense reconstruction in real time,” Proc. of IEEE International Conference Robotic Automation, pp. 2609–2616, 2014.

F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3D mapping with an RGB-D camera,” IEEE Transactions on Robotics, vol. 30, no. 1, pp.177-187, 2014.

N. Fioraio and L. D. Stefano, “SlamDunk: affordable real-time RGB-D SLAM,” Workshop at the European Conference on Computer Vision, pp. 401–414, 2014.

J. Steckel and H. Peremans, “BatSLAM: simultaneous localization and mapping using biomimetic sonar,” PLoS One, vol. 8, no. 1, e54076, 2013.

D. Zou and P. Tan, “CoSLAM: collaborative visual SLAM in dynamic environments,” IEEE Transactions on Pattern Analysis and Machine IUntelligence, vol. 35, no. 2, pp. 354–66, 2013.

C. Kerl, J. Sturm, and D. Cremers, “Dense visual SLAM for RGB-D cameras,” Proc. of IEEE International Conference on Intelligent Robotic Systems, pp. 2100–2106, 2013.

S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe based visual inertial SLAM using nonlinear optimization,” The International Journal of Robotics Research, vol. 34, no. 3, pp. 314–334, 2013.

W. Tan, “Robust monocular SLAM in dynamic environments,” Proc. of IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 209–218, 2013.

T. Whelan, M. Kaess, and M. Fallon, “Kintinuous: spatially extended kinectfusion,” url: https://goo.gl/G6NVLH(visitedon08-Feb-2018), 2012.

K. Pirker, M. Ruther, and H. Bischof, “CD SLAM -continuous localization and mapping in a dynamic world,” Proc. of IEEE/RSJ International Conference on Intelligent Robotic Systems (IROS), pp. 3990–3997, 2011.

R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM: dense tracking and mapping in real-time,” Proc. of IEEE International Conference on Computer Vision, pp. 2320–2327, 2011.

K. Pirker, M. Rüther, G. Schweighofer, and H. Bischof, “GPSLAM: marrying sparse geometric and dense probabilistic visual mapping,” Proc. of British Machine Vision Conference, pp. 1–12, 2011.

S. Kohlbrecher, O. V. Stryk, J. Meyer, and U. Klingauf, “A flexible and scalable SLAM system with full 3D motion estimation,” Proc. of IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 155–160, 2011.

R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon, “KinectFusion: real-time dense surface mapping and tracking,” Proc. of IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 127–136, 2011.

C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid, “RSLAM: a system for large-scale mapping in constant time using stereo,” International Journal of Computer Vision, vol. 94, no. 2, pp. 198–214, 2011.

H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige, “Double window optimisation for constant time visual SLAM,” Proc. of International Conference on Computer Vision, pp. 2352–2359, 2011.

K. Konolige and M. Agrawal, “FrameSLAM: from bundle adjustment to realtime visual mapping,” Proc. of IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1–11, 2008.

G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,” IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234, 2007.

N. Karlsson, E. D. Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian, and M. E. Munich, “The vSLAM algorithm for robust localization and mapping,” Proc. of IEEE International Conference on Robotics and Automation, pp. 24–29, 2005.

J. Neira and J. D. Tardos, “Data association in stochastic mapping using the joint compatibility test,” IEEE Transactions on Robotics and Automation, vol. 17, no. 6, pp. 890–897, 2001.

C. Bibby and I. Reid, “Simultaneous localization and mapping in dynamic environments (SLAMIDE) with reversible data association,” Robotics: Science and Systems, pp. 105–112, 2007.

C. C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. F. Durrant-Whyte, “Simultaneous localization, mapping and moving object tracking,” International Journal of Robotics Research, vol. 26, no. 9, pp. 889–916, 2007.

F. Dayoub, G. Cielniak, and T. Duckett, “Long-term experiments with an adaptive spherical view representation for navigation in changing environments,” Robotic Autonomous Systems, vol. 59, no. 5, pp. 285–295, 2011.

T. Krajník, J. P. Fentanes, O. M. Mozos, T. Duckett, J. Ekekrantz, and M. Hanheide, “Long-term topological localization for service robots in dynamic environments using spectral maps,” Proc. of International Conference on Intelligent Robots and Systems (IROS), pp. 4537–4542, 2014.

N. Sunderhauf and P. Protzel, “Towards a robust backend for pose graph SLAM,” Proc. of IEEE International Conference on Robotics and Automation, pp. 1254–1261, 2012.

L. Carlone, A. Censi, and F. Dellaert, “Selecting good measurements via L1 relaxation: A convex approach for robust estimation over graphs,” Proc. of International Conference on Intelligent Robots and Systems (IROS), pp. 2667–2674, 2014.

Y. Latif, C. Cadena, and J. Neira, “Robust loop closing over time for pose graph slam,” International Journal of Robotics Research, vol. 32, no. 14, pp. 1611–1626, 2013.

E. Olson and P. Agarwal, “Inference on networks of mixtures for robust robot mapping,” International Journal of Robotics Research, vol. 32, no. 7, pp. 826–840, 2013.

D. Sabatta, D. Scaramuzza, and R. Siegwart, “Improved appearance based matching in similar and dynamic environments using a vocabulary tree,” Proc. of IEEE International Conference on Robotics and Automation, pp. 1008–1013, 2010.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

M. Everingham, L. Van-Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The PASCAL visual object classes (VOC) challenge,” International Journal of Computer Vision, vol. 88, no. 2, pp. 303–338, 2010.