Simultaneous Enhancement of Toughness and Strength of Stretched iPP Film via Tiny Amount of β-Nucleating Agent under “Shear-free” Melt-extrusion

Chinese Journal of Polymer Science - Tập 39 Số 11 - Trang 1481-1488 - 2021
Zhongzhu Liu1, Guoqiang Zheng2, Hengchong Shi2, Chuntai Liu2, Liwei Mi1, Qian Li3, Xianhu Liu2
1College of Material and Chemical Engineering, Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
2College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
3National Center for International Joint Research of Micro-Nano Molding Technology, School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lotz, B.; Wittmann, J. C.; Lovinger, A. J. Structure and morphology of poly(propylenes): a molecular analysis. Polymer 1996, 37, 4979–4992.

Liu, Z. Z.; Li, L. L.; Zheng, G. Q.; Liu, C. T.; Mi, L. W.; Li, Q.; Liu, X. H. Effect of small amount of multi-walled carbon nanotubes on crystallization and thermal-mechanical properties of overflow microinjection molded isotactic polypropylene. Compos. Commun. 2020, 21, 100381.

Lovinger, A. J.; Chua, J. O.; Gryte, C. C. Studies on the α and β forms of isotactic polypropylene by crystallization in a temperature gradient. J. Polym. Sci., Part B: Polym. Phys. 1977, 15, 641–656.

Zhang, C. Y.; Wang, B.; Yang, J. H.; Ding, D. W.; Yan, X. R.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Guo Z. H. Synergies among the self-assembled β-nucleating agent and the sheared isotactic polypropylene matrix. Polymer 2015, 60, 40–49.

Byelov, D.; Panine, P.; Remerie, K. Biemond, E.; Alfonso, G. C.; de Jeu, W. H. Crystallization under shear in isotactic polypropylene containing nucleators. Polymer 2008, 49, 3076–3083.

Chen, Y. H.; Yang, H. Q.; Yang, S.; Zhang, Q. Y.; Li, Z. M. Temperature-dependent β-crystal growth in isotactic polypropylene with β-nucleating agent after shear flow. Chinese J. Polym. Sci. 2017, 35, 1540–1551.

Varga, J.; Menyhárd, A. Effect of solubility and nucleating duality of N, N′-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules 2007, 40, 2422–2431.

Mai, F.; Wang, K.; Yao, M. J.; Deng H.; Chen, F.; Fu, Q. Superior reinforcement in melt-spun polyethylene/multiwalled carbon nanotube fiber through formation of a shish-kebab structure. J. Phys. Chem. B 2010, 114, 10693–10702.

Uchiyama, Y.; Iwasaki, S.; Ueoka, C.; Fukui, T.; Okamoto, K.; Yamaguchi, M. Molecular orientation and mechanical anisotropy of polypropylene sheet containing N,N′-cycyolohyxyl-2,6-naphthalenedicarboxamide. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 424–433.

Liu, Z. Z.; Liu, X. H.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y.; Yin, R.; Guo Z. H. Mechanical enhancement of melt-stretched β-nucleated isotactic polypropylene: the role of lamellar branching of β-crystal. Polym. Test. 2017, 58, 227–235.

Zheng, G. Q.; Li, S. W.; Zhang, X. L.; Liu, C. T.; Dai, K.; Chen, J. B.; Li, Q.; Peng, X. F.; Shen, C. Y. Negative effect of stretching on the development of β-phase in β-nucleated isotactic polypropylene. Polym. Int. 2011, 60, 1016–1023.

Wu, Z. Q.; Wang, G.; Zhang, M. W.; Wang, K.; Fu, Q. Facilely assess the soluble behaviour of the β-nucleating agent by gradient temperature field for the construction of heterogeneous crystalline-frameworks in iPP. Soft Matter. 2015, 12, 594–601.

Liu, Z. Z.; Liu, X. H.; Li, L. L.; Zheng, G. Q.; Liu, C. T.; Qin, Q.; Mi, L. W. Crystalline structure and remarkably enhanced tensile property of β-isotactic polypropylene via overflow microinjection molding. Polym. Test. 2019, 76, 448–454.

Zhang, Y. F.; Lin, X. F.; Hu, H. Combined effect of chemically compound graphene oxide-calcium pimelate on crystallization behavior, morphology and mechanical properties of isotactic polypropylene. Polym. Adv. Technol. 2020, 31, 2301–2311.

Zhang, Y. F.; Lin, X. F.; Yan, L.; Li, Y.; He, B. Synergistic nucleation effect of calcium sulfate whisker and β-nucleating agent dicyclohexyl-terephthalamide in isotactic polypropylene. J. Therm. Anal. Calorim. 2020, 139, 343–352.

Broda, J.; Baczek, M.; Fabia, J.; Binias, D.; Fryczkowski, R. Nucleating agents based on graphene and graphene oxide for crystallization of the β-form of isotactic polypropylene. J. Mater. Sci. 2020, 55, 1436–1450.

Liu, X. H.; Dai, K.; Hao, X. Q.; Zheng, G. Q.; Liu, C. T.; Schubert, D. W.; Shen, C. Y. Crystalline structure of injection molded β-isotactic polypropylene analysis of the oriented shear zone. Ind. Eng. Chem. Res. 2013, 52, 11996–12002.

Liu, Z. Z.; Liu, X. H.; Liu, C. T.; Shen, C. Y.; Dai, K.; Zheng, G. Q. New insight into lamellar branching of β-nucleated isotactic polypropylene upon melt-stretching: WAXD and SAXS study. J. Mater. Sci. 2015, 50, 599–604.

Fujiyama, M.; Wakino, T.; Kawasaki, Y. Structure of skin layer in injection-molded polypropylene. J. Appl. Polym. Sci. 2010, 35, 29–49.

Shen, J. F.; Zhou, Y. F.; Lu, Y.; Wang, B. H.; Shen, C. Y.; Chen, J. B.; Zhang, B. Later stage melting of isotactic polypropylene. Macromolecules 2020, 53, 2136–2144.

Larin, B.; Avila-Orta, C. A.; Somani, R. H.; Hsiao, B. S.; Marom, G. Combined effect of shear and fibrous fillers on orientation-induced crystallization in discontinuous aramid fiber/isotactic polypropylene composites. Polymer 2008, 49, 295–302.

Sabino, M. A.; Ronca, G.; Müller, A. J. Heterogeneous nucleation and self-nucleation of poly(p-dioxanone). J. Mater. Sci. 2000, 35, 5071–5084.

Chang, B. B.; Schneider, K.; Patil, N.; Stephan, R.; Gert, H. Microstructure characterization in a single isotactic polypropylene spherulite by synchrotron microfocus wide angle X-ray scattering. Polymer 2018, 142, 387–393.

Bassett, D. C. Polymer spherulites: a modern assessment. J. Macrom. Sci., Part B 2003, 42, 227–256.

Norton, D. R.; Keller, A. The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene. Polymer 1985, 26, 704–716.

Quan, L. J.; Zhang, X. D.; Xia, W. L.; Chen, Y. H.; Gong, L.; Liu, Z. G.; Zhang, Q. Y.; Zhong, G. J.; Li, Z. M.; Hsiao, B. S. In situ synchrotron X-ray scattering studies on the temperature dependence of oriented β-crystal growth in isotactic polypropylene. Polym. Test. 2020, 90, 106660.

Luo, F.; Geng, C. Z.; Wang; Deng, H.; Chen, F.; Fu, Q.; Na, B. New understanding in tuning toughness of β-polypropylene: the role of β-nucleated crystalline morphology. Macromolecules 2009, 42, 9325–9331.

Liu, Z. Z.; Zheng, G. Q.; Zheng, H. L.; Dai, K.; Liu, C. T.; Chen, J. B.; Shen, C. Y. Microstructure and mechanical properties of isotactic polypropylene films fabricated via melt-extrusion and uniaxial-stretching. J. Macromol. Sci., Part B Phys. 2016, 55, 158–174.

Hoffman, J. D. Role of reptation in the rate of crystallization of polyethylene fractions from the melt. Polymer 1982, 23, 656–670.

Na, B.; Zhang, Q.; Fu, Q. Viscous-force-dominated tensile deformation behavior of oriented polyethylene. Macromolecules 2006, 39, 2584–2591.

Karger-Kocsis, J.; Varga, J. Effects of β-α transformation on the static and dynamic tensile behavior of isotactic polypropylene. J. Appl. Polym. Sci. 1998, 62, 291–300.

Karger-Kocsis, J. How does “phase transformation toughening” work in semicrystalline polymers? Polym. Eng. Sci. 2010, 36, 203–210.

Chu, F.; Yamaoka, T.; Ide, H.; Kimura, Y. Microvoid formation process during the plastic deformation of β-form polypropylene. Polymer 1994, 35, 3442–3448.

Huy, T.; Adhikari, R.; Lüpke, T.; Henning, S.; Michler, G. H. Molecular deformation mechanisms of isotactic polypropylene in α- and β-crystal forms by FTIR spectroscopy. J. Polym. Sci., Part B: Polym. Phys. 2004, 42, 4478–4488.

Chang, B. B.; Schneider, K.; Vogel, R.; Heinrich, G. Influence of nucleating agent self-assembly on structural evolution of isotactic polypropylene during uniaxial stretching. Polymer 2018, 138, 329–342.

Kawai, T.; Soeno, S.; Kuroda, S. I.; Kuroda, S. I.; Koido, S.; Nemoto, T.; Tamada, M. Deformation induced void formation and growth in β nucleated isotactic polypropylene. Polymer 2019, 178, 121523.

Shi, S. Y.; Pan, Y. M.; Lu, B.; Zheng, G. Q.; Liu, C. T.; Dai, K.; Shen, C. Y. Realizing the simultaneously improved toughness and strength of ultra-thin LLDPE parts through annealing. Polymer 2013, 54, 6843–6852.

Liu, Z. Z.; Zheng, G. Q.; Dai, K.; Liu, C. T,; Shen, C. Y. Simultaneously improving tensile strength and toughness of melt-spun β-nucleated isotactic polypropylene fibers. J. Appl. Polym. Sci. 2016, 133, 43454.

Sakuri, S.; Surojo, E.; Ariawan, D. Experimental investigation on mechanical characteristics of composite reinforced cantala fiber (CF) subjected to microcrystalline cellulose and fumigation treatments. Compos. Commun. 2020, 21, 100419.

Awad, S. A.; Khalaf, E. M. Investigation of improvement of properties of polypropylene modified by nano silica composites. Compos. Commun. 2019, 12, 59–63.

Fujiyama, M. Structure and properties of injection moldings of β-crystal nucleator-added PP. Int. Polym. Process. 1998, 13, 291–298.

Luo, F.; Wang, K.; Ning, N. Y.; Geng, C. Z. Dependence of mechanical properties on β-form content and crystalline morphology for β-nucleated isotactic polypropylene. Polym. Adv. Technol. 2011, 22, 2044–2054.