Các phương pháp đào tạo mô phỏng trong phẫu thuật aneurysm nội sọ—một đánh giá hệ thống

Springer Science and Business Media LLC - Tập 46 - Trang 1-17 - 2023
Fredrick J. Joseph1, Hanne E. R. Vanluchene1, David Bervini2
1Image Guided Therapy, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
2Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland

Tóm tắt

Với sự gia tăng độ phức tạp và giảm bớt môi trường tiếp xúc với phẫu thuật aneurysm nội sọ, việc đào tạo và duy trì kỹ năng phẫu thuật đã trở nên thách thức. Bài đánh giá này mở rộng về đào tạo mô phỏng cho kỹ thuật kẹp aneurysm nội sọ. Một đánh giá hệ thống đã được thực hiện theo các hướng dẫn PRISMA để xác định các nghiên cứu về đào tạo kẹp aneurysm sử dụng mô hình và mô phỏng. Kết quả chính là xác định các chế độ chủ yếu của quy trình mô phỏng, mô hình và phương pháp đào tạo liên quan đến đường cong học tập trong vi phẫu thuật. Các kết quả thứ cấp bao gồm đánh giá tính hợp lệ của các mô phỏng này và khả năng học hỏi từ việc sử dụng các mô phỏng đó. Trong số 2068 bài báo được sàng lọc, 26 nghiên cứu đáp ứng tiêu chí bao gồm. Các báo cáo được chọn đã sử dụng nhiều phương pháp mô phỏng khác nhau bao gồm các phương pháp ex vivo (n = 6); nền tảng thực tế ảo (VR) (n = 11); và các mô hình aneurysm tĩnh (n = 6) và động (n = 3) in 3D (n = 6). Các phương pháp đào tạo ex vivo có sự sẵn có hạn chế, các mô phỏng VR thiếu cảm giác và xúc giác, trong khi các mô hình tĩnh 3D thiếu các thành phần vi giải phẫu quan trọng và sự mô phỏng của dòng máu. Các mô hình 3D động bao gồm lưu lượng mạch đập có thể tái sử dụng và tiết kiệm chi phí nhưng thiếu các thành phần vi giải phẫu. Các phương pháp đào tạo hiện có là không đồng nhất và không mô phỏng một cách thực tế quy trình vi phẫu thuật hoàn chỉnh. Các mô phỏng hiện tại thiếu một số đặc điểm giải phẫu và các bước phẫu thuật quan trọng. Nghiên cứu trong tương lai nên tập trung vào việc phát triển và xác nhận một nền tảng đào tạo có thể tái sử dụng và tiết kiệm chi phí. Hiện tại không tồn tại phương pháp xác nhận hệ thống cho các mô hình đào tạo khác nhau, vì vậy cần xây dựng các công cụ đánh giá đồng nhất và xác nhận vai trò của mô phỏng trong giáo dục cũng như sự an toàn của bệnh nhân.

Từ khóa


Tài liệu tham khảo

Vernooij MW, Ikram MA, Tanghe HL, Vincent AJ, Hofman A, Krestin GP et al (2007) Incidental findings on brain MRI in the general population. N Engl J Med 357(18):1821–1828 Almefty RO, Spetzler RF (2014) Training aneurysm surgeons in the modern era. World Neurosurg 82(3–4):e419–e420 Burkhardt J-K, Lawton MT (2017) Training young neurosurgeons in open microsurgical aneurysm treatment. World Neurosurg 103:919–920 Janssen H, Berlis A, Lutz J, Thon N, Brückmann H (2017) State of practice: endovascular treatment of acute aneurysmal SAH in Germany. AJNR Am J Neuroradiol 38(8):1574–1579 Fredrickson VL, Strickland BA, Ravina K, Rennert RC, Donoho DA, Buchanan IA et al (2019) State of the Union in Open Neurovascular Training. World Neurosurg 122:e553–e560 Atesok K, Mabrey JD, Jazrawi LM, Egol KA (2012) Surgical simulation in orthopaedic skills training. J Am Acad Orthop Surg 20(7):410–422 Alaker M, Wynn GR, Arulampalam T (2016) Virtual reality training in laparoscopic surgery: a systematic review & meta-analysis. Int J Surg 29:85–94 Abla AA, Lawton MT (2015) Three-dimensional hollow intracranial aneurysm models and their potential role for teaching, simulation, and training. World Neurosurg 83(1):35–36 Liu Y, Gao Q, Du S, Chen Z, Fu J, Chen B et al (2017) Fabrication of cerebral aneurysm simulator with a desktop 3D printer. Sci Rep 7:44301 Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6(7):e1000100 Tay C, Khajuria A, Gupte C (2014) Simulation training: a systematic review of simulation in arthroscopy and proposal of a new competency-based training framework. Int J Surg 12(6):626–633 Kapoor S, Arora P, Kapoor V, Jayachandran M, Tiwari M (2014) Haptics - touchfeedback technology widening the horizon of medicine. J Clin Diagn Res 8(3):294–299 de Oliveira MMR, Ferrarez CE, Ramos TM, Malheiros JA, Nicolato A, Machado CJ et al (2018) Learning brain aneurysm microsurgical skills in a human placenta model: predictive validity. J Neurosurg 128(3):846–852 Aboud E, Aboud G, Al-Mefty O, Aboud T, Rammos S, Abolfotoh M et al (2015) “Live cadavers” for training in the management of intraoperative aneurysmal rupture. J Neurosurg 123(5):1339–1346 Belykh E, Miller EJ, Lei T, Chapple K, Byvaltsev VA, Spetzler RF et al (2017) Face, content, and construct validity of an aneurysm clipping model using human placenta. World Neurosurg 105:952–60.e2 Carlos GF, Enrrique FS, Aylen Andrea TG, Sabrina MN, Silvina M, Clara M et al (2022) Introducing a Realistic, Low-Cost Simulation Model for Clipping of Brain Aneurysms. World Neurosurg 158:305–11.e1 Belykh E, Giovani A, Abramov I, Ngo B, Bardonova L, Zhao X et al (2021) Novel system of simulation models for aneurysm clipping training: description of models and assessment of face, content, and construct validity. Oper Neurosurg (Hagerstown, Md) 21(6):558–569 Giovani A, Sandu AM, Petrescu G, Gorgan RM, Goel A (2019) Application of microanastomosis techniques in vascular neurosurgery training and innovation of future surgical strategies for giant aneurysms. World Neurosurg 122:e1120–e1127 Perin A, Gambatesa E, Galbiati TF, Fanizzi C, Carone G, Rui CB et al (2021) The “STARS-CASCADE” study: virtual reality simulation as a new training approach in vascular neurosurgery. World Neurosurg 154:e130–e146 Steineke TC, Barbery D (2021) Microsurgical clipping of middle cerebral artery aneurysms: preoperative planning using virtual reality to reduce procedure time. Neurosurg Focus 51(2):E12 Teodoro-Vite S, Perez-Lomeli JS, Dominguez-Velasco CF, Hernandez-Valencia AF, Capurso-Garcia MA, Padilla-Castaneda MA (2021) A high-fidelity hybrid virtual reality simulator of aneurysm clipping repair with brain sylvian fissure exploration for vascular neurosurgery training. Simul Healthc : journal of the Society for Simulation in Healthcare 16(4):285–294 Gmeiner M, Dirnberger J, Fenz W, Gollwitzer M, Wurm G, Trenkler J et al (2018) Virtual cerebral aneurysm clipping with real-time haptic force feedback in neurosurgical education. World Neurosurg 112:e313–e323 Shono N, Kin T, Nomura S, Miyawaki S, Saito T, Imai H et al (2018) Microsurgery simulator of cerebral aneurysm clipping with interactive cerebral deformation featuring a virtual arachnoid. Oper Neurosurg (Hagerstown, Md) 14(5):579–589 Chugh AJ, Pace JR, Singer J, Tatsuoka C, Hoffer A, Selman WR et al (2017) Use of a surgical rehearsal platform and improvement in aneurysm clipping measures: results of a prospective, randomized trial. J Neurosurg 126(3):838–844 Kockro RA, Killeen T, Ayyad A, Glaser M, Stadie A, Reisch R et al (2016) Aneurysm surgery with preoperative three-dimensional planning in a virtual reality environment: technique and outcome analysis. World Neurosurg 96:489–499 Alaraj A, Luciano CJ, Bailey DP, Elsenousi A, Roitberg BZ, Bernardo A et al (2015) Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback. Neurosurgery 11(Suppl 2):52–58 Marinho P, Vermandel M, Bourgeois P, Lejeune J-P, Mordon S, Thines L (2014) Preoperative simulation for the planning of microsurgical clipping of intracranial aneurysms. Simul Healthc : journal of the Society for Simulation in Healthcare 9(6):370–376 Bambakidis NC, Selman WR, Sloan AE (2013) Surgical rehearsal platform: potential uses in microsurgery. Neurosurgery 73(Suppl 1):122–126 Wang S, Zhang H, Jing J, Wei L, Wang R (2012) Application of virtual reality techniques in preoperative surgical planning for intracranial anterior circulation aneurysms. Med J Chin People’s Liberation Army 37(5):393–397 Mery F, Aranda F, Mendez-Orellana C, Caro I, Pesenti J, Torres J et al (2021) Reusable Low-Cost 3D Training Model for Aneurysm Clipping. World Neurosurg 147:29–36 Wang L, Ye X, Hao Q, Ma L, Chen X, Wang H et al (2018) Three-dimensional intracranial middle cerebral artery aneurysm models for aneurysm surgery and training. J Clin Neurosci : official journal of the Neurosurgical Society of Australasia 50:77–82 Wang J-L, Yuan Z-G, Qian G-L, Bao W-Q, Jin G-L (2018) 3D printing of intracranial aneurysm based on intracranial digital subtraction angiography and its clinical application. Medicine 97(24):e11103 Mashiko T, Kaneko N, Konno T, Otani K, Nagayama R, Watanabe E (2017) Training in cerebral aneurysm clipping using self-made 3D models. J Surg Educ 74(4):681–689 Ryan JR, Almefty KK, Nakaji P, Frakes DH (2016) Cerebral aneurysm clipping surgery simulation using patient-specific 3D Printing and silicone casting. World Neurosurg 88:175–181 Kimura T, Morita A, Nishimura K, Aiyama H, Itoh H, Fukaya S et al (2009) Simulation of and training for cerebral aneurysm clipping with 3D models. Neurosurgery 65(4):719–726 Joseph FJ, Weber S, Raabe A, Bervini D (2020) Neurosurgical simulator for training aneurysm microsurgery-a user suitability study involving neurosurgeons and residents. Acta Neurochir 162(10):2313–2321 Leal AG, Mori YT, Nohama P, de Souza MA (2019) Three-dimensional hollow elastic models for intracranial aneurysm clipping election - a case study. Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Society Annu Int Conf 2019:4137–4140 Olabe J, Olabe J (2009) Microsurgical training on an in vitro chicken wing infusion model. Surg Neurol 72(6):695–699 Olabe J, Olabe J, Roda J (2011) Microsurgical cerebral aneurysm training porcine model. Neurol India 59(1):78–81 Olabe J, Olabe J, Sancho V (2009) Human cadaver brain infusion model for neurosurgical training. Surg Neurol 72(6):700–702 Benet A, Plata-Bello J, Abla AA, Acevedo-Bolton G, Saloner D, Lawton MT (2015) Implantation of 3D-printed patient-specific aneurysm models into cadaveric specimens: a new training paradigm to allow for improvements in cerebrovascular surgery and research. Biomed Res Int 2015:939387 Hicdonmez T, Hamamcioglu MK, Tiryaki M, Cukur Z, Cobanoglu S (2006) Microneurosurgical training model in fresh cadaveric cow brain: a laboratory study simulating the approach to the circle of Willis. Surg Neuro 66(1):100–4 (discussion 4) Schwandt E, Kockro R, Kramer A, Glaser M, Ringel F (2022) Presurgical selection of the ideal aneurysm clip by the use of a three-dimensional planning system. Neurosurg Rev 45(4):2887–2894 Stadie AT, Kockro RA, Reisch R, Tropine A, Boor S, Stoeter P et al (2008) Virtual reality system for planning minimally invasive neurosurgery. Technical note J Neurosurg 108(2):382–394 Wong GKC, Zhu CXL, Ahuja AT, Poon WS (2007) Craniotomy and clipping of intracranial aneurysm in a stereoscopic virtual reality environment. Neurosurgery 61(3):564–569 Mo D-p, Bao S-d, Li L, Yi Z-q, Zhang J-y, Zhang Y (2010) Virtual reality system for diagnosis and therapeutic planning of cerebral aneurysms. Chin Med J 123(16):2206–10 Mori K, Esaki T, Yamamoto T, Nakao Y (2011) Individualized pterional keyhole clipping surgery based on a preoperative three-dimensional virtual osteotomy technique for unruptured middle cerebral artery aneurysm. Minim Invasive Neurosurg : MIN 54(5–6):207–213 Allgaier M, Neyazi B, Preim B, Saalfeld S (2021) Distance and force visualisations for improved simulation of intracranial aneurysm clipping. Int J Comput Assist Radiol Surg 16(8):1297–1304 Knox K, Kerber CW, Singel SA, Bailey MJ, Imbesi SG (2005) Rapid prototyping to create vascular replicas from CT scan data: making tools to teach, rehearse, and choose treatment strategies. Catheterization Cardiovasc Interv : official journal of the Society for Cardiac Angiography & Interventions 65(1):47–53 Erbano BO, Opolski AC, Olandoski M, Foggiatto JA, Kubrusly LF, Dietz UA et al (2013) Rapid prototyping of three-dimensional biomodels as an adjuvant in the surgical planning for intracranial aneurysms. Acta cirurgica brasileira 28(11):756–761 Faraj MK, Hoz SS, Mohammad AJ (2020) The use of three-dimensional anatomical patient-specific printed models in surgical clipping of intracranial aneurysm: a pilot study. Surg Neurol Int 11:381 Anderson JR, Thompson WL, Alkattan AK, Diaz O, Klucznik R, Zhang YJ et al (2016) Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models. J Neurointerv Surg 8(5):517–520 Blaszczyk M, Jabbar R, Szmyd B, Radek M (2021) 3D printing of rapid, low-cost and patient-specific models of brain vasculature for use in preoperative planning in clipping of intracranial aneurysms. J Clin Med 10(6):1–12 Frolich AMJ, Spallek J, Brehmer L, Buhk JH, Krause D, Fiehler J et al (2016) 3D printing of intracranial aneurysms using fused deposition modeling offers highly accurate replications. Am J Neuroradiol 37(1):120–124 Wurm G, Lehner M, Tomancok B, Kleiser R, Nussbaumer K (2011) Cerebrovascular biomodeling for aneurysm surgery: simulation-based training by means of rapid prototyping technologies. Surg Innov 18(3):294–306 Lan Q, Zhu Q, Xu L, Xu T (2020) Application of 3D-printed craniocerebral model in simulated surgery for complex intracranial lesions. World Neurosurg 134:e761–e770 Lawton MT (2011) Seven Aneurysms: Tenets and Techniques for Clipping. Thieme Medical Publishers, New York Kumagai K, Mori K, Takeuchi S, Wada K (2019) Surgical training for the management of intraoperative aneurysm rupture using a three-dimensional artificial model. Asian J Neurosurg 14(1):172–174 Sugiu K, Martin JB, Jean B, Gailloud P, Mandai S, Rufenacht DA (2003) Artificial cerebral aneurysm model for medical testing, training, and research. Neurol Med Chir (Tokyo) 43(2):69–72 (discussion 3) Ribeiro de Oliveira MM, Ramos TM, Ferrarez CE, Machado CJ, Vieira Costa PH, Alvarenga DL, et al (2019) Development and validation of the skills assessment in microsurgery for brain aneurysms (SAMBA) instrument for predicting proficiency in aneurysm surgery. J Neurosurg 1–7 EwonuBari EB, Watson JT, Amaza DS, Madueke NM, Donatus AA, Effiong OE (2012) Problems and prospects of acquistion of human cadaver for medical education in Nigeria. J Pak Med Assoc 62(11):1134–1136 Servadei F, Rossini Z, Nicolosi F, Morselli C, Park KB (2018) The role of neurosurgery in countries with limited facilities: facts and challenges. World Neurosurg 112:315–321 Nicolosi F, Rossini Z, Zaed I, Kolias AG, Fornari M, Servadei F (2018) Neurosurgical digital teaching in low-middle income countries: beyond the frontiers of traditional education. Neurosurg Focus 45(4):E17