Simulation study to find suitable dopants of CdS buffer layer for CZTS solar cell

Journal of Theoretical and Applied Physics - Tập 14 - Trang 75-84 - 2019
Farjana Akter Jhuma1, Mohammad Junaebur Rashid1,2
1Semiconductor Technology Research Centre, Faculty of Science, University of Dhaka, Dhaka, Bangladesh
2Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, Bangladesh

Tóm tắt

The performance of CZTS solar cell, a promising candidate in the field of energy production from sunlight, can be improved by optimizing the parameters of most widely used CdS buffer layer. In this work, numerical study have been done on the typical CZTS solar cell structures containing Mo thin film as back contact on glass substrate using SCAPS-1D solar cell simulation software. Then, the CZTS has been used as the absorber layer followed by CdS buffer later. Following, ZnO and transparent conducting oxide n-ITO layers have been considered as window layer and front contact, respectively. In the simulations, the CdS buffer layer has been doped with three different materials such as Silver (Ag), Copper (Cu) and Chlorine (Cl) for a wide acceptable range of carrier concentration. After obtaining the suitable carrier concentration, the thickness of the doped buffer layer has been varied keeping other layer parameters constant to see the variation of performance parameters open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF) and efficiency (η) of the CZTS solar cell.

Tài liệu tham khảo

Bagher, A.M., Vahid, M.M.A., Mohsen, M.: Types of solar cells and application. Am. J. Opt. Photonics 3(5), 94–113 (2015) Rao, S., Morankar, A., Verma, H., Goswami, P.: Emerging photovoltaics: organic, copper zinc tin sulphide and perovskite-based solar cells. J. Appl. Chem. 2016, 1–12 (2016) Swami, R.: Solar cell. Int. J. Sci. Res. Publ. 2(7), 1–5 (2012) Zhao, J., Wang, A., Green, M.A.: 24·5% Efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates. Prog. Photovolt. Res. Appl. 7(6), 471–474 (1999) Kaur, M., Singh, H.: A review: comparison of silicon solar cells and thin film solar cells. Int. J. Core Eng. Manag. (IJCEM) 3(2), 15–23 (2016) Green, M.A., Emery, K., Hisikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl. 2018(26), 3–12 (2018) Yeh, M.Y., Lei, P.H., Lin, S.H., Yang, C.D.: Copper–zinc–tin–sulfur thin film using spin-coating technology. Materials 9(7), 526 (2016) Katagiri, H., Jimbo, K., Maw, W.S., Takeuchi, A.: Development of CZTS based thin film solar cells. Thin Solid Films 517(7), 2455–2460 (2009) Hironori, K., Kotoe, S., Tsukasa, W., Hiroyuki, S., Tomomi, K., Shinsuke, M.: Development of thin film solar cell based On Cu2ZnSnS4 thin films. Sol. Energy Mater. Sol. Cells 65(1–4), 141–148 (2001) Zakaria, Z., Chelvanathan, P., Rashid, M.J., Akhtaruzzaman, M., Alam, M.M., Al-Othman, Z.A., Alamoud, A., Sopian, K., Amin, N.: Effects of sulfurization temperature on Cu2ZnSnS4 thin film deposited by single source thermal evaporation method. Jpn. J. Appl. Phys. 54, 1–5 (2015) Yan, C., Huang, J., Sun, K., Johnston, S., Zhang, Y., Sun, H., Pu, A., He, M., Liu, F., Eder, K., Yang, L., Cairney, J.M., Ekins-Daukes, N.J., Hameiri, Z., Stride, J.A., Chen, S., Green, M.A., Ha, X.: Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat Energy 3(9), 764 (2018) Jhuma, F.A., Shaily, M.Z., Rashid, M.J.: Towards high efficiency CZTS solar cell through buffer layer optimization. Mater. Renew. Sustain. Energy 8(6), 1–7 (2019) Cantas, A., Turkoglu, F., Meric, E., Akca, F.G., Ozdemir, M., Tarhan, E., Ozyuzer, L., Aygun, G.: Importance of CdS buffer layer thickness on Cu2ZnSnS4 based solar cell efficiency. J. Phys. D Appl. Phys. 51(27), 1–33 (2018) Pandya, S.G.: Preparation and characterization of cadmium sulphide nanocrystalline thin film grown by chemical method. Int. J. Recent Sci. Res. 7(12), 14887–14890 (2016) Ghosh, P.K.: Effect of particle size on dielectric properties of CdS nano-particles. Int. J. Hybrid Inf. Technol. 8(4), 49–54 (2015) Suresh, S.: Studies on the dielectric properties of CdS nanoparticles. Appl. Nanosci. 4(3), 325–329 (2014) Faraj, M.G., Ibrahim, K.: Comparison of cadmium sulfide thin films deposited on glass and polyethylene terephthalate substrates with thermal evaporation for solar cell applications. J. Mater. Sci. Mater. Electron. 23(6), 1219–1223 (2012) Singh, B., Singh, J., Kaur, R., Moudgil, R.K., Tripathi, S.K.: Quantitative measurement of transport properties: Ag-doped nanocrystalline CdS thin films. R. Soc. Chem. 7, 53951–53962 (2017) Brandhorst, H.W.: Impurity profile and energy band diagram for the cuprous sulfide–cadmium sulfide heterojunction. National Aeronautics and Space Administration, Washington (1969) Safe, H.H.A., Hossain, M., Naseem, H., Brown, W., Dhafiri, A.A.: Chlorine-doped CdS thin films from CdCl2-mixed CdS powder. J. Electron. Mater. 33(2), 128–134 (2004) Islam, M.A., Hossain, M.S., Aliyu, M.M., Yusuf Sulaiman, T., Razykov, K., Sopian, N.Amin: Structural, optical and electrical properties of in doped CdS thin films prepared from co-sputtering technique. J. Ovonic Res. 10(5), 185–190 (2014) Patil, B.N., Naik, D.B., Shrivastava, V.S.: Synthesis and characterization of Al doped CdS thin films grown by chemical bath deposition method and its application to remove dye by photocatalytic treatment. Chalcogenide Lett. 8(2), 117–121 (2011) Yang, K.J., Sim, J.H., Jeon, B., Son, D.H., Kim, D.H., Sung, S.J., Hwang, D.K., Song, S., Khadka, D.B., Kim, J., Kang, J.K.: Effects of Na and MoS2 on Cu2ZnSnS4 thin-film solar cell. Prog. Photovolt. Res. Appl. 23(7), 862–873 (2014) Fuhs, W.: Zinc oxide—a material for micro- and optoelectronic applications. NATO Sci. Ser. II Math. Phys. Chem. 194, 197–209 (2005) Coutts, T.J., Mason, T.O., Perkins, J.D., Ginley, D.S.: Transparent conducting oxides: status and opportunities in basic research. Electrochem. Soc. Proc. 99–11, 274–289 (1999) Niemegeers, A., Burgelman, M., Decock, K., Verschraegen, J., Degrave, S.: SCAPS manual, Version: 19, December 2016, http://scaps.elis.ugent.be/. Accessed 13 Apr 2019 Ferdaous, M.T., Islam, M.F., Haque, K.A.S.M.E., Amin, N.: Numerical analysis of ultra-thin high efficiency Cd1-xZnxS/Cd1-xZnxTe solar cell. Electr. Electron. Eng. 2015(5(A)), 14–18 (2015) Peijie, L., Lingyan, L., Jinling, Y., Shuying, C., Peimin, L., Qiao, Z.: Numerical simulation of Cu2ZnSnS4 based solar cells with In2S3 buffer layers by SCAPS-1D. J. Appl. Sci. Eng. 17(4), 383–390 (2014) Mebarkia, C., Dib, D., Zerfaoui, H., Belghit, R.: Energy efficiency of a photovoltaic cell based thin films CZTS by SCAPS. J. Fundam. Appl. Sci. 8(2), 363–371 (2016) Wanda, M.D., Ouédraogo, S., Tchoffo, F., Zougmoré, F., Ndjaka, J.M.B.: Numerical investigations and analysis of Cu2ZnSnS4 based solar cells by SCAPS-1D. Int. J. Photoenergy 2016, 1–9 (2016) Xie, R., Li, J.S.M., Guo, L.: Structural and photo electrochemical properties of Cu-doped CdS thin films prepared by ultrasonic spray pyrolysis. Int. J. Photoenergy 2013, 1–7 (2013) Sivaraman, T., Narasimman, V., Nagarethinam, V.S., Balu, A.R.: Effect of chlorine doping on the structural, morphological, optical and electrical properties of spray deposited CdS thin films. Prog. Nat. Sci. Mater. Int. 25(5), 392–398 (2015) Kanevce, A., Reese, M.O., Barnes, T.M., Jensen, S.A., Metzger, W.K.: The roles of carrier concentration and interface, bulk, and grain-boundary recombination for 25% efficient CdTe solar cells. J. Appl. Phys. 121(21), 214506 (2017) Kolsi, S., Ben Amar, M., Samet, H., Ouali, A.: Effect of Gaussian doping profile on the performance of a thin film polycrystalline solar cell. EPJ Web Conf. 29, 1–11 (2012) Dabbabi, S., Nasr, T.B., Turki, N.K.: Parameters optimization of CIGS solar cell using 2D physical modeling. Results Phys. 7, 4020–4024 (2017) Green, M.A.: Solar cells: operating principles, technologies and system applications, pp. 86–88. Prentice Hall, Eaglewood Cliffs (1982) Mauk, M., Sims, P., Rand, J., Barnett, A.: Solar cells: materials, manufacture and operation, pp. 115–156. Academic Press, Cambridge (2013) Dadu, M., Kapoor, A., Tripathi, K.N.: Effect of operating current dependent series resistance on the fill factor of a solar cell. Sol. Energy Mater. Sol. Cells 71(2), 213–218 (2002) Huang, J.Y., Lin, C.Y., Shen, C.H., Shieh, J.M., Da, B.T.: Low cost high-efficiency amorphous silicon solar cells with improved light-soaking stability. Sol. Energy Mater. Sol. Cells 98, 277–282 (2012)