Simulation of isotropic turbulence degeneration based on the large-eddy method

Mathematical Models and Computer Simulations - Tập 5 - Trang 360-370 - 2013
U. S. Abdibekov1, B. T. Zhumagulov1, D. B. Zhakebayev1, K. Zh. Zhubat1
1Al-Farabi Kazakh National University, Almaty, Kazakhstan

Tóm tắt

In this paper, the simulation of isotropic turbulence degeneration is studied. The turbulent process is modeled based on filtered three-dimensional unsteady Navier-Stokes equations. For the closure of the main equations, a viscous model of turbulence is used. The problem is solved numerically, i.e., in solving the equation of motion the modified method of fractional steps using compact schemes is employed and the equation for pressure is solved by the Fourier method in combination with matrix factorization. Temporal variations in the kinetic energy of turbulence and changes in the micro scale of turbulence and longitudinal-transverse correlation functions have been obtained. Longitudinal and transverse one-dimensional spectra have been found.

Tài liệu tham khảo

A. S. Monin and A. M. Yaglom, Statistical hydromechanics (Nauka, Moscow, 1967), Chap. 2 [in Russian]. J. O. Hinze, Turbulence: an Introduction to Its Mechanism and Theory (McGraw-Hill, New York, 1959). J. H. Ferziger, “Large Eddy Simulation of Turbulent Flows,” AIAA J. 15(9), 1261–1267 (1977). P. Sagaut, Large Eddy Simulation for Incompressible Flows (Springer-Verlag Heidelberg, 2002). L. Sirovich, L. Smith, and V. Yakhot, “Energy spectrum of homogeneous and isotropic turbulence in far dissipation range,” Phys. Rev. Lett. 72(3), 344–347 (1994). A. I. Tolstykh, Compact Finite Difference Schemes and Their Application to Problems in Aerodynamics (Nauka, Moscow, 1990) [in Russian]. N. N. Yanenko, Method of Fractional Steps for the Solution of Multidimensional Problems in Mathematical Physics (Nauka, Novosibirsk, 1967). P. J. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque, NM, 1976). U. S. Abdibekov, B. T. Zhumagulov, and B. D. Surapbergenov, “Numerical simulation of turbulent flows using large-eddy method,” Vychisl. Technol. 12(4) (2007). N. T. Danaev, D. B. Zhakebaev, and A. U. Abdibekov, “Algorithm for solving nonstationary three-dimensional Navier-Stokes equations with large Reynolds numbers on multiprocessor systems,” Notes Numer. Fluid Mech. Multidiscip. Des. 115, 313–326 (2011). U. S. Abdibekov, B. T. Zhumagulov, and D. B. Zhakebaev, “Numerical modeling of non-homogeneous turbulence on cluster computing system,” Notes Numer. Fluid Mech. Multidiscip. Des. 115, 327–338 (2011). V. M. Ievlev, Numerical Simulation of Turbulent Flows (Nauka, Moscow, 1990) [in Russian]. H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, MA, 1972) S. A. Orszag and G. S. Patterson, “Numerical simulation of three-dimensional homogeneous isotropic turbulence,” Phys. Rev. Lett. 28(2), 76–79 (1972). A. M. Obukhov and A. M. Yaglom, Microstructure of a turbulent flow, Prikl. Mat. Mekh, No. 13, 3–26 (1951). N. de Divitiis, “Lyapunov analysis for fully developed homogeneous isotropic turbulence,” Theor. Comput. Fluid Dyn. 25(6), 421–445 (2011) D. E. Goldstein, O. V. Vasilyev, and N. K. Kevlahan, “CVS and SCALES simulation of 3-D isotropic turbulence,” J. Turb. 6(37), 1–20 (2005). G. De Stefano, D. E. Goldstein, and O. V. Vasilyev, “On the role of sub-grid scale coherent modes in large eddy simulation,” J. Fluid Mech. 525, 263–274 (2005). K. Schneider and O. V. Vasilyev, “Wavelet methods in computational fluid dynamics,” Ann. Rev. Fluid Mech. 42, 473–503 (2010).