Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mô phỏng các hạt khói thuốc lá trong một phòng thông gió
Tóm tắt
Khói thuốc lá trong nhà thường xảy ra trong cuộc sống hàng ngày, và việc nhấn mạnh tầm quan trọng của việc giảm thiểu mối nguy hại từ các hạt khói đối với những người không hút thuốc là rất quan trọng. Để điều tra định lượng các đặc tính dòng chảy trong một phòng có thông gió, phương pháp động lực học chất lỏng tính toán (CFD) được sử dụng để đánh giá vận tốc, nồng độ và mức độ hít thở của các hạt trong nhà bằng một mannequin có đường hô hấp trên thực tế. Nghiên cứu này thực hiện mô phỏng sự khuếch tán của các hạt khói từ quy mô phòng đến quy mô đường hô hấp trên của con người. Một thí nghiệm cũng được thực hiện để đo nồng độ PM2.5. Với việc tăng tỷ lệ thay đổi không khí mỗi giờ (ACH) từ không đến 12.32 và 17.14, nồng độ hạt trong nhà giảm lần lượt 58.5% và 67.9%, số lượng hạt hít vào giảm 22.9% và 43.8%, và nồng độ hạt xung quanh người ở giảm 10.3% và 17.5%, tương ứng. Điều này cho thấy thông gió trong nhà có ảnh hưởng mạnh mẽ đến các đặc tính dòng chảy, nồng độ hạt và kết quả của các hạt. Tỷ lệ ACH 17.14 được phát hiện có tác dụng giảm đáng kể nồng độ hạt xung quanh người ở và giảm số lượng hạt khói được hít vào và còn lại trong nhà. Điều này cho thấy thiết bị thông gió có thể giảm số lượng hạt khói trong phòng. Vẫn còn 41.3% và 31.9% hạt còn lại trong phòng khi ACH là 12.32 và 17.14, gây hại cho sức khỏe con người.
Từ khóa
#khói thuốc lá #phòng thông gió #động lực học chất lỏng tính toán #nồng độ hạt #sức khỏe con ngườiTài liệu tham khảo
Abou Hweij W, Ghaddar N, Ghali K, Habchi C (2016) Optimized performance of displacement ventilation aided with chair fans for comfort and indoor air quality. Energy and Buildings 127:7–919. https://doi.org/10.1016/j.enbuild.2016.06.052
Bartholomew KS (2015) Policy options to promote smokefree environments for children and adolescents. Curr Probl Pediatr Adolesc Health Care 45(6):146–181. https://doi.org/10.1016/j.cppeds.2015.04.001
Bady M, Kato S, Takahashi T, Huang H (2011) Experimental investigations of the indoor natural ventilation for different building configurations and incidences. Build Environ 46(1):5–74. https://doi.org/10.1016/j.buildenv.2010.07.001
Belanger K, Beckett W, Triche E, Bracken MB, Holford T, Ren P, et al.(2003) Symptoms of Wheeze and Persistent Cough in the First Year of Life: Associations with Indoor Allergens, Air Contaminants, and Maternal History of Asthma. Am J Epidemiol 158(3):195–202. https://doi.org/10.1093/aje/kwg148
Ben-David T, Waring MS (2016) Impact of natural versus mechanical ventilation on simulated indoor air quality and energy consumption in offices in fourteen US cities. Build Environ 104:20–336. https://doi.org/10.1016/j.buildenv.2016.05.007
Choi DH, Choi SH, Kang DH (2016) Influence of surgical smoke on indoor air quality in hospital operating rooms. Aerosol and Air Quality Research 17(3):21–830
Cai M, Shen S, Li H, Zhang X, Ma Y (2016) Study of contact characteristics between a respirator and a headform. J Occup Environ Hyg 13(3):60. https://doi.org/10.1080/15459624.2015.1116699
Daisey JM, Angell WJ, Apte MG (2003) Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air 13(1):3–64. https://doi.org/10.1034/j.1600-0668.2003.00153.x
Drago G, Perrino C, Canepari S, Ruggieri S, L’Abbate L, Longo V et al (2018) Relationship between domestic smoking and metals and rare earth elements concentration in indoor PM2. 5. Environ Res 165:71–80. https://doi.org/10.1016/j.envres.2018.03.026
Duarte R, Gomes MDG, Rodrigues AM (2017) Classroom ventilation with manual opening of windows: findings from a two-year-long experimental study of a Portuguese secondary school. Build Environ 124:118–129. https://doi.org/10.1016/j.buildenv.2017.07.041
Deng Q, Yang X, Zhang JS (2012) Key factor analysis of VOC sorption and its impact on indoor concentrations: the role of ventilation. Build Environ 47:82–187. https://doi.org/10.1016/j.buildenv.2011.07.026
Gold DR (2000) Environmental tobacco smoke, indoor allergens, and childhood asthma. Environ Health Perspect 108(4):43–651. https://doi.org/10.1289/ehp.00108s4643
Hu K, Chen Q (2015) Ventilation optimization for reduction of indoor semi-volatile organic compound concentration based on the variational principle. Build Environ 94:76–682. https://doi.org/10.1016/j.buildenv.2015.10.021
Hayashi T, Ishizu Y, Kato S, Murakami S (2002) CFD analysis on characteristics of contaminated indoor air ventilation and its application in the evaluation of the effects of contaminant inhalation by a human occupant. Build Environ 37(3):19–230. https://doi.org/10.1016/s0360-1323(01)00029-4
Hyun S, Kleinstreuer C (2001) Numerical simulation of mixed convection heat and mass transfer in a human inhalation test chamber. Int J Heat Mass Transf 44(12):247–2260. https://doi.org/10.1016/s0017-9310(00)00268-4
Ifa S, Driss Z (2020) Numerical simulation and experimental validation of the ventilation system performance in a heated room. Air Qual Atmos Health 14:71–179. https://doi.org/10.1007/s11869-020-00923-6
Jung CC, Wu PC, Tseng CH, Su HJ (2015) Indoor air quality varies with ventilation types and working areas in hospitals. Build Environ 85:90–195. https://doi.org/10.1016/j.buildenv.2014.11.026
Johnson TJ, Olfert JS, Cabot R, Treacy C, Yurteri CU, Dickens C et al (2015) Transient measurement of the effective particle density of cigarette smoke. J Aerosol Sci 87:3–74. https://doi.org/10.1016/j.jaerosci.2015.05.006
Kim M, Braatz RD, Kim JT, Yoo C (2015) Indoor air quality control for improving passenger health in subway platforms using an outdoor air quality dependent ventilation system. Build Environ 92:07–417. https://doi.org/10.1016/j.buildenv.2015.05.010
Keith CH, Derrick JC (1960) Measurement of the particle size distribution and concentration of cigarette smoke by the “conifuge.” J Colloid Sci 15(4):340–356. https://doi.org/10.1016/0095-8522(60)90037-4
Lin HH, Ezzati M, Murray M (2007) Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis. PLoS Med 4(1):20. https://doi.org/10.1371/journal.pmed.0040020
Lyng NL, Gunnarsen L, Andersen HV (2015) The effect of ventilation on the indoor air concentration of PCB: an intervention study. Build Environ 94:305–312. https://doi.org/10.1016/j.buildenv.2015.08.019
Liu W, Liu D, Gao N (2017a) CFD study on gaseous pollutant transmission characteristics under different ventilation strategies in a typical chemical laboratory. Build Environ 126:38–251. https://doi.org/10.1016/j.buildenv.2017.09.033
Liu Y, Li H, Feng G (2017b) Simulation of inhalable aerosol particle distribution generated from cooking by Eulerian approach with RNG k–epsilon turbulence model and pollution exposure in a residential kitchen space. Build Simul 10(1):35–144. https://doi.org/10.1007/s12273-016-0313-4
Li B, Zhao LC, Wang L, Liu C, McAdam KG, Wang B (2016) Gas-phase pressure and flow velocity fields inside a burning cigarette during a puff. Thermochim Acta 623:2–28. https://doi.org/10.1016/j.tca.2015.11.006
Melikov A, Kaczmarczyk J (2007) Measurement and prediction of indoor air quality using a breathing thermal manikin. Indoor air, 17(1):0-59. https://doi.org/10.1111/j.1600-0668.2006.00451.x
Ma Z, Sun S (2018) Numerical assessment of the effect of cigarette smoking on indoor PM2. 5 distribution and study of ventilation strategies. Indoor and Built Environment 27(3):69–379. https://doi.org/10.1177/1420326x16676304
Mitova MI, Bielik N, Campelos PB et al (2019) Air quality assessment of the tobacco heating system 2.2 under simulated residential conditions. Air Qual Atmos Health 12:07–823. https://doi.org/10.1007/s11869-019-00697-6
Ostendorp G, Heinzow B (2015) Indoor air quality in timber built kindergartens. Gefahrstoffe Reinhalt Luft 75(3):71–75
Omrani S, Garcia-Hansen V, Capra BR, Drogemuller R (2017) On the effect of provision of balconies on natural ventilation and thermal comfort in high-rise residential buildings. Build Environ 123:04–516. https://doi.org/10.1016/j.buildenv.2017.07.016
Robinson RJ, Yu CP (2001) Deposition of cigarette smoke particles in the human respiratory tract. Aerosol Sci Technol 34(2):02–215. https://doi.org/10.1080/027868201300034844
Russo JS, Khalifa E (2011) Computational study of breathing methods for inhalation exposure. HVAC&R Research 17(4):19–431. https://doi.org/10.1080/10789669.2011.578701
Saha SP, Bhalla DK, Whayne TF, Gairola CG (2007) Cigarette smoke and adverse health effects: an overview of research trends and future needs. Int J Angiol 16(03):7–83. https://doi.org/10.1055/s-0031-1278254
Sangani RG, Ghio AJ (2011) Lung injury after cigarette smoking is particle related. Int J Chron Obstruct Pulmon Dis 6:191. https://doi.org/10.2147/copd.s14911
Sahu SK, Tiwari M, Bhangare RC, Pandit GG (2012) Particle size distribution of mainstream and exhaled cigarette smoke and predictive deposition in human respiratory tract. Aerosol and Air Quality Research 13(1):324–332. https://doi.org/10.4209/aaqr.2012.02.0041
Sheng Y, Fang L, Nie J (2017) Experimental analysis of indoor air quality improvement achieved by using a Clean-Air Heat Pump (CAHP) air-cleaner in a ventilation system. Build Environ 122:343–353. https://doi.org/10.1016/j.buildenv.2017.06.032
Shao X, Li X, Ma X, Liang C (2017) Multi-mode ventilation: an efficient ventilation strategy for changeable scenarios and energy saving. Build Environ 115:332–344. https://doi.org/10.1016/j.buildenv.2017.01.032
Sørensen DN, Voigt LK (2003) Modelling flow and heat transfer around a seated human body by computational fluid dynamics. Build Environ 38(6):753–762. https://doi.org/10.1016/s0360-1323(03)00027-1
Turner WJ, Walker IS (2013) Using a ventilation controller to optimise residential passive ventilation for energy and indoor air quality. Build Environ 70:20–30. https://doi.org/10.2172/1220534
Wargocki P, Sundell J, Bischof W, Brundrett G, Fanger PO, Gyntelberg F et al (2002) Ventilation and health in non-industrial indoor environments: report from a European Multidisciplinary Scientific Consensus Meeting (EUROVEN). Indoor Air 12(2):113–128. https://doi.org/10.1034/j.1600-0668.2002.01145.x
Wang M, Lin CH, Chen Q (2012) Advanced turbulence models for predicting particle transport in enclosed environments. Build Environ 47:40–49. https://doi.org/10.1016/j.buildenv.2011.05.018
Yu CKH, Li M, Chan V, Lai ACK (2014) Influence of mechanical ventilation system on indoor carbon dioxide and particulate matter concentration. Build Environ 76:73–80. https://doi.org/10.1016/j.buildenv.2014.03.004
Zhang Z, Kleinstreuer C, Hyun S (2012) Size-change and deposition of conventional and composite cigarette smoke particles during inhalation in a subject-specific airway model. J Aerosol Sci 46:34–52. https://doi.org/10.1016/j.jaerosci.2011.12.002
Zhang X, Li H, Shen S, Cai M (2015) Investigation of the flow-field in the upper respiratory system when wearing N95 filtering facepiece respirator. J Occup Environ Hyg 13(5):372–382. https://doi.org/10.1080/15459624.2015.1116697