Simulation of developmental changes in action potentials with ventricular cell models

Springer Science and Business Media LLC - Tập 1 Số 1 - Trang 11-23 - 2007
Hitomi Itoh1, Yoshiro Naito1, Masaru Tomita1
1Institute for Advanced Biosciences, Keio University, Fujisawa, Kanagawa, 252-8520, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Artman M (1992) Sarcolemmal Na(+)–Ca2+ exchange activity and exchanger immunoreactivity in developing rabbit hearts. Am J Physiol 263(5 Pt 2):H1506–H1513

Artman M, Ichikawa H, Avkiran M, Coetzee WA (1995) Na+/Ca2+ exchange current density in cardiac myocytes from rabbits and guinea pigs during postnatal development. Am J Physiol 268(4 Pt 2):H1714–H1722

Chen F, Ding S, Lee BS, Wetzel GT (2000) Sarcoplasmic reticulum Ca(2+)ATPase and cell contraction in developing rabbit heart. J Mol Cell Cardiol 32(5):745–755

Cho CH, Kim SS, Jeong MJ, Lee CO, Shin HS (2000) The Na+–Ca2+ exchanger is essential for embryonic heart development in mice. Mol Cells 10(6):712–722

Chun KR, Koenen M, Katus HA, Zehelein J (2004) Expression of the IKr components KCNH2 (rERG) and KCNE2 (rMiRP1) during late rat heart development. Exp Mol Med 36(4):367–371

Couch JR, West TC, Hoff HE (1969) Development of the action potential of the prenatal rat heart. Circ Res 24(1):19–31

Davies MP, An RH, Doevendans P, Kubalak S, Chien KR, Kass RS (1996) Developmental changes in ionic channel activity in the embryonic murine heart. Circ Res 78(1):15–25

Faber GM, Rudy Y (2000) Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. Biophys J 78(5):2392–2404

Ferron L, Capuano V, Deroubaix E, Coulombe A, Renaud JF (2002) Functional and molecular characterization of a T-type Ca(2+) channel during fetal and postnatal rat heart development. J Mol Cell Cardiol 34(5):533–546

Franco D, Demolombe S, Kupershmidt S, Dumaine R, Dominguez JN, Roden D, Antzelevitch C, Escande D, Moorman AF (2001) Divergent expression of delayed rectifier K(+) channel subunits during mouse heart development. Cardiovasc Res 52(1):65–75

Hagiwara N, Irisawa H, Kameyama M (1988) Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol 395:233–253

Huynh TV, Chen F, Wetzel GT, Friedman WF, Klitzner TS (1992) Developmental changes in membrane Ca2+ and K+ currents in fetal, neonatal, and adult rabbit ventricular myocytes. Circ Res 70(3):508–515

Kato Y, Masumiya H, Agata N, Tanaka H, Shigenobu K (1996) Developmental changes in action potential and membrane currents in fetal, neonatal and adult guinea-pig ventricular myocytes. J Mol Cell Cardiol 28(7):1515–1522

Kilborn MJ, Fedida D (1990) A study of the developmental changes in outward currents of rat ventricular myocytes. J Physiol 430:37–60

Kiyosue T, Spindler AJ, Noble SJ, Noble D (1993) Background inward current in ventricular and atrial cells of the guinea-pig. Proc Biol Sci 252(1333):65–74

Klugbauer N, Welling A, Specht V, Seisenberger C, Hofmann F (2002) L-type Ca2+ channels of the embryonic mouse heart. Eur J Pharmacol 447(2–3):279–284

Kojima M, Sada H, Sperelakis N (1990) Developmental changes in beta-adrenergic and cholinergic interactions on calcium-dependent slow action potentials in rat ventricular muscles. Br J Pharmacol 99(2):327–333

Lakatta EG, Maltsev VA, Bogdanov KY, Stern MD, Vinogradova TM (2003) Cyclic variation of intracellular calcium: a critical factor for cardiac pacemaker cell dominance. Circ Res 92(3):e45–e50

Linz KW, Meyer R (2000) Profile and kinetics of L-type calcium current during the cardiac ventricular action potential compared in guinea-pigs, rats and rabbits. Pflugers Arch 439(5):588–599

Liu W, Yasui K, Opthof T, Ishiki R, Lee JK, Kamiya K, Yokota M, Kodama I (2002) Developmental changes of Ca(2+) handling in mouse ventricular cells from early embryo to adulthood. Life Sci 71(11):1279–1292

Mahony L (1996) Regulation of intracellular calcium concentration in the developing heart. Cardiovasc Res 31 Spec No:E61–E67

Masuda H, Sperelakis N (1993) Inwardly rectifying potassium current in rat fetal and neonatal ventricular cardiomyocytes. Am J Physiol 265(4 Pt 2):H1107–H1111

Matsuoka S, Sarai N, Kuratomi S, Ono K, Noma A (2003) Role of individual ionic current systems in ventricular cells hypothesized by a model study. Jpn J Physiol 53(2):105–123

Nagashima M, Tohse N, Kimura K, Yamada Y, Fujii N, Yabu H (2001) Alternation of inwardly rectifying background K+ channel during development of rat fetal cardiomyocytes. J Mol Cell Cardiol 33(3):533–543

Nakajima I, Watanabe H, Iino K, Saito T, Miura M (2002) Ca2+ overload evokes a transient outward current in guinea-pig ventricular myocytes. Circ J 66(1):87–92

Niwa N, Yasui K, Opthof T, Takemura H, Shimizu A, Horiba M, Lee JK, Honjo H, Kamiya K, Kodama I (2004) Cav3.2 subunit underlies the functional T-type Ca2+ channel in murine hearts during the embryonic period. Am J Physiol Heart Circ Physiol 286(6):H2257–2263

Olivetti G, Anversa P, Loud AV (1980) Morphometric study of early postnatal development in the left and right ventricular myocardium of the rat. II. Tissue composition, capillary growth, and sarcoplasmic alterations. Circ Res 46(4):503–512

Ono K, Ito H (1995) Role of rapidly activating delayed rectifier K+ current in sinoatrial node pacemaker activity. Am J Physiol 269(2 Pt 2):H453–H462

Puglisi JL, Wang F, Bers DM (2004) Modeling the isolated cardiac myocyte. Prog Biophys Mol Biol 85(2–3):163–178

Sanchez-Chapula J, Elizalde A, Navarro-Polanco R, Barajas H (1994) Differences in outward currents between neonatal and adult rabbit ventricular cells. Am J Physiol 266(3 Pt 2):H1184–H1194

Sarai N, Matsuoka S, Kuratomi S, Ono K, Noma A (2003) Role of individual ionic current systems in the SA node hypothesized by a model study. Jpn J Physiol 53(2):125–134

Satoh H, Delbridge LM, Blatter LA, Bers DM (1996) Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects. Biophys J 70(3):1494–1504

Seki S, Nagashima M, Yamada Y, Tsutsuura M, Kobayashi T, Namiki A, Tohse N (2003) Fetal and postnatal development of Ca2+ transients and Ca2+ sparks in rat cardiomyocytes. Cardiovasc Res 58(3):535–548

Shirokov R, Levis R, Shirokova N, Rios E (1993) Ca(2+)-dependent inactivation of cardiac L-type Ca2+ channels does not affect their voltage sensor. J Gen Physiol 102(6):1005–1030

Spence SG, Vetter C, Hoe CM (1994) Effects of the class III antiarrhythmic, dofetilide (UK-68,798) on the heart rate of midgestation rat embryos, in vitro. Teratology 49(4):282–292

Takahashi K, Kaizu K, Hu B, Tomita M (2004) A multi-algorithm, multi-timescale method for cell simulation. Bioinformatics 20(4):538–546

Takeshima H, Komazaki S, Hirose K, Nishi M, Noda T, Iino M (1998) Embryonic lethality and abnormal cardiac myocytes in mice lacking ryanodine receptor type 2. Embo J 17(12):3309–3316

Wang L, Feng ZP, Kondo CS, Sheldon RS, Duff HJ (1996) Developmental changes in the delayed rectifier K+ channels in mouse heart. Circ Res 79(1):79–85

Xie LH, Takano M, Noma A (1997) Development of inwardly rectifying K+ channel family in rat ventricular myocytes. Am J Physiol 272(4 Pt 2):H1741–H1750

Yasui K, Liu W, Opthof T, Kada K, Lee JK, Kamiya K, Kodama I (2001) I(f) current and spontaneous activity in mouse embryonic ventricular myocytes. Circ Res 88(5):536–542

Yokoshiki H, Tohse N (2001) Developmental changes of ion channels. In: Sperelakis N, Kurachi Y, Terzic A, Cohen M (eds) Heart physiology and pathophysiology, vol 4. Academic Press, New York, pp 719–735

Zhang ZJ, Jurkiewicz NK, Folander K, Lazarides E, Salata JJ, Swanson R (1994) K+ currents expressed from the guinea pig cardiac IsK protein are enhanced by activators of protein kinase C. Proc Natl Acad Sci U S A 91(5):1766–1770