Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kavehpour, 1997, Effects of compressibility and rarefaction on gaseous flows in microchannels, Numer. Heat Transfer A, 32, 677, 10.1080/10407789708913912
Hooman, 2008, A superposition approach to study slip-flow forced convection in straight microchannels of uniform but arbitrary cross-section, Int. J. Heat Mass Transfer, 51, 3753, 10.1016/j.ijheatmasstransfer.2007.12.014
Hooman, 2008, Effects of temperature-dependent viscosity on forced convection inside a porous medium, Transp. Porous Media, 75, 249
Goodarzi, 2014, Comparison of the finite volume and lattice boltzmann methods for solving natural convection heat transfer problems inside cavities and enclosures, Abstr. Appl. Anal., 10.1155/2014/762184
Nguyen, 2006
Hooman, 2007, Entropy generation for microscale forced convection: Effects of different thermal boundary conditions, velocity slip, temperature jump, viscous dissipation, and duct geometry, Int. Commun. Heat Mass Transfer, 34, 945, 10.1016/j.icheatmasstransfer.2007.05.019
Naris, 2008, Rarefied gas flow in a triangular duct based on a boundary fitted lattice, Eur. J. Mech. Fluids, 27, 810, 10.1016/j.euromechflu.2008.01.002
Pantazis, 2013, Rarefied gas flow through a cylindrical tube due to a small pressure difference, Eur. J. Mech. Fluids, 38, 114, 10.1016/j.euromechflu.2012.10.006
Hooman, 2009, Scaling effects for flow in micro-channels: Variable property, viscous heating, velocity slip, and temperature jump, Int. Commun. Heat Mass Transfer, 36, 192, 10.1016/j.icheatmasstransfer.2008.10.003
Oran, 1998, Direct simulation Mont Carlo: recent advances and applications, Annu. Rev. Fluid Mech., 30, 403, 10.1146/annurev.fluid.30.1.403
Lim, 2002, Application of lattice Boltzmann method to simulate microchannel flows, Phys. Fluids, 14, 2299, 10.1063/1.1483841
Shu, 2005, A lattice Boltzmann kinetic model for microflow and heat transfer, J. Stat. Phys., 121, 239, 10.1007/s10955-005-8413-z
Sofonea, 2005, Boundary conditions for the upwind finite difference Lattice Boltzmann model: evidence of slip velocity in micro-channel flow, J. Comput. Phys., 207, 639, 10.1016/j.jcp.2005.02.003
Zhang, 2005, Gas flow in microchannels — a lattice Boltzmann method approach, J. Stat. Phys., 121, 257, 10.1007/s10955-005-8416-9
Hung, 2006, A numerical study for slip flow heat transfer, Appl. Math. Comput., 173, 1246, 10.1016/j.amc.2005.04.068
Karimipour, 2014, Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method, Physica A, 402, 150, 10.1016/j.physa.2014.01.057
Tian, 2007, Lattice Boltzmann scheme for simulating thermal micro-flow, Physica A, 385, 59, 10.1016/j.physa.2007.01.021
Babovsky, 2009, A numerical model for the Boltzmann equation with applications to micro flows, Comput. Math. Appl., 58, 791, 10.1016/j.camwa.2009.05.003
Chen, 2009, Simulation of microchannel flow using the lattice Boltzmann method, Physica A, 388, 4803, 10.1016/j.physa.2009.08.015
Bhatnagar, 1954, A model for collision process in gases. I. Small amplitude processes in charged and neutral one-component system, Phys. Rev., 94, 511, 10.1103/PhysRev.94.511
Chen, 2010, Lattice Boltzmann method for slip flow heat transfer in circular microtubes: extended Graetz problem, Appl. Math. Comput., 217, 3314, 10.1016/j.amc.2010.08.063
Chen, 2010, Entropy generation analysis of thermal micro-Couette flows in slip regime, Int. J. Therm. Sci., 49, 2211, 10.1016/j.ijthermalsci.2010.06.019
He, 1998, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., 146, 282, 10.1006/jcph.1998.6057
D’Orazio, 2003, Lattice Boltzmann simulation of open flows with heat transfer, Phys. Fluids, 15, 2778, 10.1063/1.1597681
D’Orazio, 2004, Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition, Int. J. Therm. Sci., 43, 575, 10.1016/j.ijthermalsci.2003.11.002
Karimipour, 2013, The effects of inclination angle and Prandtl number on the mixed convection in the inclined lid driven cavity using lattice Boltzmann method, J. Theoret. Appl. Mech., 51, 447
Szalmas, 2007, Multiple-relaxation time lattice Boltzmann method for the finite Knudsen number region, Physica A, 379, 401, 10.1016/j.physa.2007.01.013
Goodarzi, 2014, Numerical study of entropy generation due to coupled laminar and turbulent mixed convection and thermal radiation in an enclosure filled with a semitransparent medium, Sci. World J., 8
Verhaeghe, 2009, Lattice Boltzmann modeling of microchannel flow in slip flow regime, J. Comput. Phys., 228, 147, 10.1016/j.jcp.2008.09.004
Chen, 2010, Simulation of thermal micro-flow using lattice Boltzmann method with Langmuir slip model, Int. J. Heat Fluid Flow, 31, 227, 10.1016/j.ijheatfluidflow.2009.12.006
Tian, 2010, Lattice Boltzmann simulation of gaseous finite-Kundsen microflows, Internat. J. Modern Phys. C, 21, 769, 10.1142/S0129183110015464
Karimipour, 2012, Investigation of the gravity effects on the mixed convection heat transfer in a microchannel using lattice Boltzmann method, Int. J. Therm. Sci., 54, 142, 10.1016/j.ijthermalsci.2011.11.015
Khorasanizadeh, 2013, Entropy generation of Cu–water nanofluid mixed convection in a cavity, Eur. J. Mech. B Fluids, 37, 143, 10.1016/j.euromechflu.2012.09.002
Santra, 2009, Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates, Int. J. Therm. Sci., 48, 391, 10.1016/j.ijthermalsci.2008.10.004
Goodarzi, 2014, An investigation of laminar and turbulent nanofluid mixed convection in a shallow rectangular enclosure using a two-phase mixture model, Int. J. Therm. Sci., 75, 204, 10.1016/j.ijthermalsci.2013.08.003
Togun, 2014, Heat transfer to turbulent and laminar Cu/water flow over a backward-facing step, Appl. Math. Comput., 239, 153, 10.1016/j.amc.2014.04.051
Sheikhzadeh, 2011, Natural convection of Cu–water nanofluid in a cavity with partially active side walls, Eur. J. Mech. B Fluids, 30, 166, 10.1016/j.euromechflu.2010.10.003
Safaei, 2011, Numerical modeling of turbulence mixed convection heat transfer in air filled enclosures by finite volume method, Int. J. Multiphys., 5, 307, 10.1260/1750-9548.5.4.307
Karimipour, 2011, Periodic mixed convection of a nanofluid in a cavity with top lid sinusoidal motion, Proc. IMechE Part C: J. Mech. Eng. Sci., 225, 2149, 10.1177/0954406211404634
Esfe, 2014, Effect of nanofluid variable properties on mixed convection flow and heat transfer in an inclined two-sided lid-driven cavity with sinusoidal heating on sidewalls, Heat Transfer Res., 45, 409, 10.1615/HeatTransRes.2013007127
Esfe, 2014, Numerical simulation of natural convection around an obstacle placed in an enclosure filled with different types of nanofluids, Heat Transfer Res., 45, 279
Aminossadati, 2011, Effects of magnetic field on nanofluid forced convection in a partially heated microchannel, Int. J. Non-Linear Mech., 46, 1373, 10.1016/j.ijnonlinmec.2011.07.013
Kalteh, 2011, Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel, Int. J. Heat Fluid Flow, 32, 107, 10.1016/j.ijheatfluidflow.2010.08.001
Mital, 2013, Semi-analytical investigation of electronics cooling using developing nanofluid flow in rectangular microchannels, Appl. Therm. Eng., 52, 321, 10.1016/j.applthermaleng.2012.12.020
Mital, 2013, Analytical analysis of heat transfer and pumping power of laminar nanofluid developing flow in microchannels, Appl. Therm. Eng., 50, 429, 10.1016/j.applthermaleng.2012.07.040
Raisi, 2011, A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no-slip conditions, Numer. Heat Transfer A, 59, 114, 10.1080/10407782.2011.540964
Tamayol, 2011, Slip-flow in microchannels of non-circular cross sections, J. Fluids Eng., 133, 091202-1, 10.1115/1.4004591
Hooman, 2010, Effects of viscous heating, fluid property variation, velocity slip, and temperature jump on convection through parallel plate and circular microchannels, Int. Commun. Heat Mass Transfer, 37, 34, 10.1016/j.icheatmasstransfer.2009.09.011
Zhou, 2010, Multiscale simulation of flow and heat transfer of nanofluid with lattice Boltzmann method, Int. J. Multiphase Flow, 36, 364, 10.1016/j.ijmultiphaseflow.2010.01.005
Esfe, 2014, Mixed-convection flow in a liddriven square cavity filled with a nanofluid with variable properties: effect of the nanoparticle diameter and of the position of a hot obstacle, Heat Transfer Res., 45, 563, 10.1615/HeatTransRes.2014007271
Lai, 2011, Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure, Int. J. Therm. Sci., 50, 1930, 10.1016/j.ijthermalsci.2011.04.015
Guo, 2012, Nanofluid multi-phase convective heat transfer in closed domain: Simulation with lattice Boltzmann method, Int. Commun. Heat Mass Transfer, 39, 350, 10.1016/j.icheatmasstransfer.2011.12.013
Ay, 2012, Application of lattice Boltzmann method to the fluid analysis in a rectangular microchannel, Comput. Math. Appl., 64, 1065, 10.1016/j.camwa.2012.03.025
Yang, 2011, Numerical study of flow and heat transfer characteristics of alumina-water nanofluids in a microchannel using the lattice Boltzmann method, Int. Commun. Heat Mass Transfer, 38, 607, 10.1016/j.icheatmasstransfer.2011.03.010
Xuan, 2003, Investigation on convective heat transfer and flow features of nanofluids, ASME J. Heat Transfer, 125, 151, 10.1115/1.1532008
Brinkman, 1952, The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20, 571, 10.1063/1.1700493
Chon, 2005, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl. Phys. Lett., 87, 153107, 10.1063/1.2093936
S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases, third ed., Cambridge, 1999.
Qian, 1992, Lattice BGK models for Navier–Stokes equation, Europhys. Lett., 17, 479, 10.1209/0295-5075/17/6/001
Niu, 2007, A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows, Comp. Fluids, 36, 273, 10.1016/j.compfluid.2005.11.007
D’Orazio, 2004, Simulating two-dimensional thermal channel flows by means of a lattice Boltzmann method with new boundary conditions, Future Gener. Comput. Syst., 20, 935, 10.1016/j.future.2003.12.005
Zou, 1997, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids, 9, 1591, 10.1063/1.869307
Alamyane, 2010, Simulation of forced convection in a channel with extended surfaces by the lattice Boltzmann method, Comput. Math. Appl., 59, 2421, 10.1016/j.camwa.2009.08.070
Gad-el-Hak, 2001, Flow physics in MEMS, Rev. Mech. Ind., 2, 313
Thompson, 1997, A general boundary condition for liquid flow at solid surfaces, Phys. Rev. Lett., 63, 766, 10.1103/PhysRevLett.63.766
Ngoma, 2007, Heat flux and slip effects on liquid flow in a microchannel, Int. J. Therm. Sci., 46, 1076, 10.1016/j.ijthermalsci.2007.02.001
Succi, 2002, Mesoscopic modelling of slip motion at fluid-solid interfaces with heterogeneous catalysis, Phys. Rev. Lett., 89, 10.1103/PhysRevLett.89.064502