Simulation of capillary flow with a dynamic contact angle
Tóm tắt
Từ khóa
Tài liệu tham khảo
H. Worth: NEAR team recovers mission after faulty engine burn. Available at http://near.jhuapl.edu/news/articles/99jan29 1 (1999).
NEAR Anomaly Review Board: The NEAR Rendezvous burn anomaly of December 1998. Johns Hopkins University, Applied Physics Laboratory (November 1999).
Abramson, H.N. (Ed.): The dynamic behaviour of liquids in moving containers. NASA SP-106, Washington DC (1966).
Dussan V., E.B.: On the spreading of liquids on solid surfaces: static and dynamic contact lines. Ann. Rev. Fluid Mech., vol. 11, p 371–400 (1979).
Shikhmurzaev, Y.D.: The moving contact line on a smooth solid surface. Int. J. Multiphase Flow, vol. 19, p. 589–610 (1993).
Blake, T.D.: Dynamic contact angles and wetting kinetics. In: Wettability, Berg, J.C. (Ed.), Marcel Dekker, New York. p. 251–309 (1993)
Jiang, T.S., Oh, S.G., Slattery, J.C.: Correlation for dynamic contact angle. J. Colloid Interface Sc., vol. 69, p. 74–77 (1979).
Bracke, M., De Voeght, F., Joos, P.: The kinetics of wetting: the dynamic contact angle. Progr. Colloid Pol. Sc., vol. 79, p. 142–149 (1989).
Seeberg, J.E., Berg, J.C.: Dynamic wetting in the flow of capillary number regime. Chem. Eng. Sc., vol. 47, p. 4455–4464 (1992).
Fan, H., Gao, Y.X., Huang, X.Y.: Thermodynamics modelling for moving contact line in gas/liquid/solid system: capillary rise problem revisited. Phys. Fluids, vol. 13, p. 1615–1623 (2001).
Zhang, J., Kwok, D.Y.: Lattice-Boltzmann study on the contact angle and contact line dynamics of liquid-vapour interfaces. Langmuir, vol. 20, p. 8137–8141 (2004).
Michaelis, M.: Kapillarinduzierte Schwingungen freier Flüssigkeitsoberflächen. Fortschritt-Bericht VDI 454, VDI Verlag, Düsseldorf (2003).
Michaelis, M., Dreyer, M.E.: Test-case number 31: reorientation of a free liquid interface in a partly filled right circular cylinder upon gravity step reduction. Multiphase Science and Technology vol.,6 p. 219–238 (2004).
Shikhmurzaev, Y.D.: Moving contact lines in liquid/liquid/solid systems. J. Fluid Mech., vol. 334, p. 211–249 (1997).
Hamraoui, A., Thuresson, K., Nylander, T., Yaminsky, V.: Can a dynamic contact angle be understood in terms of a friction coefficient? J. Colloid Interface Sc., vol. 226, p. 199–204 (2000).
Wölk, G., Dreyer, M., Rath, H.J., Weislogel, M.M.: Damped oscillations of a liquid/ gas surface upon step reduction in gravity. J. Spacecraft Rockets, vol. 34, p. 110–117 (1997).
Hirt, C.W., Nichols, B.D.: Volume of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., vol. 39, p. 201–225 (1981).
Gerrits, J.: Dynamics of liquid-filled spacecraft. PhD thesis, University of Groningen (2001). Available at www.ub.rug.nl/eldoc/dis/science/j.gerrits
Van Mourik, S.: Numerical modelling of the dynamic contact angle. Master’s thesis, University of Groningen (2002).
Gerrits, J., Veldman, A.E.P.: Dynamics of liquid-filled spacecraft. J. Eng. Math., vol. 45, p. 21–38 (2003).
Verstappen, R.W.C.P., Veldman, A.E.P.: Symmetry-preserving discretisation of turbulent flow. J. Comput. Physics, vol. 187, p. 343–368 (2003).