Simulation of a turbulent flow subjected to favorable and adverse pressure gradients
Tóm tắt
This paper reports the results from a direct numerical simulation of an initially turbulent boundary layer passing over a wall-mounted “speed bump” geometry. The speed bump, represented in the form of a Gaussian distribution profile, generates a favorable pressure gradient region over the upstream half of the geometry, followed by an adverse pressure gradient over the downstream half. The boundary layer approaching the bump undergoes strong acceleration in the favorable pressure gradient region before experiencing incipient or very weak separation within the adverse pressure gradient region. These types of flows have proved to be particularly challenging to predict using lower-fidelity simulation tools based on various turbulence modeling approaches and warrant the use of the highest fidelity simulation techniques. The present direct numerical simulation is performed using a flow solver developed exclusively for graphics processing units. Simulation results are utilized to examine the key phenomena present in the flowfield, such as relaminarization/stabilization in the strong acceleration region succeeded by retransition to turbulence near the onset of adverse pressure gradient, incipient/weak separation and development of internal layers, where the sense of streamwise pressure gradient changes at the foot, apex and tail of the bump.
Tài liệu tham khảo
Ashcroft, G., Zhang, X.: Optimized prefactored compact schemes. J. Comput. Phys. 190(2), 459–477 (2003). https://doi.org/10.1016/S0021-9991(03)00293-6
Aubard, G., Stefanin Volpiani, P., Gloerfelt, X., Robinet, J.C.: Comparison of subgrid-scale viscosity models and selective filtering strategy for large-eddy simulations. Flow Turbul. Combust. 91(3), 497–518 (2013). https://doi.org/10.1007/s10494-013-9485-5
Badri Narayanan, M.A., Ramjee, V.: On the criteria for reverse transition in a two-dimensional boundary layer flow. J. Fluid Mech. 35(2), 225–241 (1969). https://doi.org/10.1017/S002211206900108X
Berland, J., Bogey, C., Marsden, O., Bailly, C.: High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems. J. Comput. Phys. 224(2), 637–662 (2007). https://doi.org/10.1016/j.jcp.2006.10.017
Bogey, C., Bailly, C.: A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194(1), 194–214 (2004). https://doi.org/10.1016/j.jcp.2003.09.003
Bogey, C., Bailly, C.: A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations. J. Comput. Phys. 228(5), 1447–1465 (2009). https://doi.org/10.1016/j.jcp.2008.10.042
Gaitonde, D.V., Visbal, M.R.: Padé-type higher-order boundary filters for the Navier–Stokes equations. AIAA J. 38(11), 2103–2112 (2000). https://doi.org/10.2514/2.872
Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001). https://doi.org/10.1137/S003614450036757X
Lund, T.S., Wu, X., Squires, K.D.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140(2), 233–258 (1998). https://doi.org/10.1006/jcph.1998.5882
Morgan, B., Larsson, J., Kawai, S., Lele, S.K.: Improving low-frequency characteristics of recycling/rescaling inflow turbulence generation. AIAA J. 49(3), 582–597 (2011). https://doi.org/10.2514/1.J050705
Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to \({\text{ Re }}_\tau = 590\). Phys. Fluids 11(4), 943–945 (1999). https://doi.org/10.1063/1.869966
Muck, K.C., Hoffmann, P.H., Bradshaw, P.: The effect of convex surface curvature on turbulent boundary layers. J. Fluid Mech. 161, 347–369 (1985). https://doi.org/10.1017/S002211208500297X
Narasimha, R., Sreenivasan, K.R.: Relaminarization in highly accelerated turbulent boundary layers. J. Fluid Mech. 61(3), 417–447 (1973). https://doi.org/10.1017/S0022112073000790
Patel, V.C., Head, M.R.: Reversion of turbulent to laminar flow. J. Fluid Mech. 34(2), 371–392 (1968). https://doi.org/10.1017/S0022112068001953
Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116–126 (2010). https://doi.org/10.1017/S0022112010003113
Sciacovelli, L., Cinnella, P., Gloerfelt, X.: Direct numerical simulations of supersonic turbulent channel flows of dense gases. J. Fluid Mech. 821, 153–199 (2017). https://doi.org/10.1017/jfm.2017.237
Slotnick, J.P.: Integrated CFD validation experiments for prediction of turbulent separated flows for subsonic transport aircraft. In: NATO Science and Technology Organization, Meeting Proceedings RDP, STO-MP-AVT-307 (2019). https://doi.org/10.14339/STO-MP-AVT-307
So, R.M.C., Mellor, G.L.: Experiment on turbulent boundary layers on a concave wall. Aeronaut. Q. 26(1), 25–40 (1975). https://doi.org/10.1017/S0001925900007174
Spalart, P.R.: Numerical study of sink-flow boundary layers. J. Fluid Mech. 172, 307–328 (1986). https://doi.org/10.1017/S0022112086001751
Spalart, P.R., Belyaev, K.V., Garbaruk, A.V., Shur, M.L., Strelets, M.K., Travin, A.K.: Large-eddy and direct numerical simulations of the Bachalo–Johnson flow with shock-induced separation. Flow Turbul. Combust. 99(3–4), 865–885 (2017). https://doi.org/10.1007/s10494-017-9832-z
Spalart, P.R., Watmuff, J.H.: Experimental and numerical study of a turbulent boundary layer with pressure gradients. J. Fluid Mech. 249, 337–371 (1993). https://doi.org/10.1017/S002211209300120X
Uzun, A., Hussaini, M.Y.: Some issues in large-eddy simulations for chevron nozzle jet flows. J. Propuls. Power 28(2), 246–258 (2012). https://doi.org/10.2514/1.B34274
Uzun, A., Malik, M.R.: Large-eddy simulation of flow over a wall-mounted hump with separation and reattachment. AIAA J. 56(2), 715–730 (2018). https://doi.org/10.2514/1.J056397
Uzun, A., Malik, M.R.: Wall-resolved large-eddy simulations of transonic shock-induced flow separation. AIAA J. 57(5), 1955–1972 (2019). https://doi.org/10.2514/1.J057850
Verstappen, R.W.C.P., Veldman, A.E.P.: Direct numerical simulation of turbulence at lower costs. J. Eng. Math. 32(2–3), 143–159 (1997). https://doi.org/10.1023/A:1004255329158
Visbal, M.R., Gaitonde, D.V.: Very high-order spatially implicit schemes for computational acoustics on curvilinear meshes. J. Comput. Acoust. 9(4), 1259–1286 (2001). https://doi.org/10.1016/S0218-396X(01)00054-1
Vreman, A.W., Kuerten, J.G.M.: Statistics of spatial derivatives of velocity and pressure in turbulent channel flow. Phys. Fluids 26(8), 085103-1/29 (2014). https://doi.org/10.1063/1.4891624
Warnack, D., Fernholz, H.H.: The effects of a favourable pressure gradient and of the Reynolds number on an incompressible axisymmetric turbulent Part 2. The boundary layer with relaminarization. boundary layer. J. Fluid Mech. 359, 357–381 (1998). https://doi.org/10.1017/S0022112097008501
Williams, O., Samuell, M., Sarwas, S., Robbins, M., Ferrante, A.: Experimental study of a CFD validation test case for turbulent separated flows. In: AIAA Paper 2020-0092, AIAA Scitech 2020 Forum, Orlando (2020). https://doi.org/10.2514/6.2020-0092