Simulation of a novel hybrid membrane-cryogenic process for post-combustion carbon capture

Carbon Capture Science & Technology - Tập 5 - Trang 100075 - 2022
Run Li1, Shaohan Lian1, Zezhou Zhang1, Shuai Deng2, Chunfeng Song1
1Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, PR China
2Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China, Tianjin 300350, China

Tài liệu tham khảo

Anantharaman, R., Berstad, D., Roussanaly, S., 2014. Techno-economic performance of a hybrid membrane - liquefaction process for post-combustion CO2 capture, in: 6th International Conference on Applied Energy (ICAE), Taipei, TAIWAN, pp. 1244-1247. doi:10.1016/j.egypro.2014.11.1068. Baker, 2017, CO2 capture from natural gas power plants using selective exhaust gas recycle membrane designs, Int. J. Greenh. Gas Control., 66, 35, 10.1016/j.ijggc.2017.08.016 Baker, 2014, Gas separation membrane materials: a perspective, Macromolecules, 47, 6999, 10.1021/ma501488s Chiwaye, 2021, On optimisation of N2 and CO2-selective hybrid membrane process systems for post-combustion CO2 capture from coal-fired power plants, J. Membr. Sci., 638, 10.1016/j.memsci.2021.119691 DOE/NETL, 2012. IECM technical documentation: membrane-based CO2 capture systems for coal-fired power plants. https://www.cmu.edu/epp/iecm/documentation/IECM.20Membrane.20Tech.20Report.20September.202012.pdf. DOE/NETL, 2016. Pilot testing of a membrane system for post-combustion CO2 capture. doi:10.2172/1337555. DOE/OSTI, 2015. Pilot testing of a membrane system for postcombustion CO2 capture. https://www.osti.gov/servlets/purl/1337555. Gizaw, 2020, Fabrication and characterization of nitrogen selective thin-film metallic glass/polyacrylonitrile composite membrane for gas separation, Sep. Purif. Technol., 237, 10.1016/j.seppur.2019.116340 Hussain, 2015, Two-stage membrane system for post-combustion CO2 capture application, Energy Fuels, 29, 6664, 10.1021/acs.energyfuels.5b01464 Ji, 2021, Remarkably enhanced gas separation properties of PIM-1 at sub-ambient temperatures, J. Membr. Sci., 623, 10.1016/j.memsci.2021.119091 Jiang, 2019, Penetrating chains mimicking plant root branching to build mechanically robust, ultra-stable CO2-philic membranes for superior carbon capture, J. Mater. Chem. A, 7, 16704, 10.1039/C9TA03416A Jin, 2020, Effective separation of CO2 using metal-incorporated rGO membranes, Adv. Mater., 32, 10.1002/adma.201907580 Lee, 2022, Understanding and improving the modular properties of high-performance SSZ-13 membranes for effective flue gas treatment, J. Membr. Sci., 646, 10.1016/j.memsci.2021.120246 Lee, 2019, Development of novel sub-ambient membrane systems for energy-efficient post-combustion CO2 capture, Appl. Energy, 238, 1060, 10.1016/j.apenergy.2019.01.130 Li, 2019, Oriented Zeolitic imidazolate framework membranes within polymeric matrices for effective N2/CO2 separation, J. Membr. Sci., 572, 82, 10.1016/j.memsci.2018.10.086 Li, 2022, Techno-economic evaluation of a novel membrane-cryogenic hybrid process for carbon capture, Appl. Therm. Eng., 200, 10.1016/j.applthermaleng.2021.117688 Liu, 2016, Post-combustion carbon dioxide capture via 6FDA/BPDA-DAM hollow fiber membranes at sub-ambient temperatures, J. Membr. Sci., 510, 447, 10.1016/j.memsci.2016.03.027 Low, 2013, A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas, J. Membr. Sci., 431, 139, 10.1016/j.memsci.2012.12.014 Merkel, 2010, Power plant post-combustion carbon dioxide capture: an opportunity for membranes, J. Membr. Sci., 359, 126, 10.1016/j.memsci.2009.10.041 Norhasyima, 2018, Advances in CO2 utilization technology: a patent landscape review, J. CO2 Util., 26, 323, 10.1016/j.jcou.2018.05.022 Park, 2017, Maximizing the right stuff: The trade-off between membrane permeability and selectivity, Science, 356, 6343, 10.1126/science.aab0530 Ramirez-Santos, 2017, Utilization of blast furnace flue gas: opportunities and challenges for polymeric membrane gas separation processes, J. Membr. Sci., 526, 191, 10.1016/j.memsci.2016.12.033 Raupach, 2007, Global and regional drivers of accelerating CO2 emissions, Proc. Natl. Acad. Sci. USA, 104, 10288, 10.1073/pnas.0700609104 Ren, 2020, Hybrid membrane process for post-combustion noteCO2 capture from coal-fired power plant, J. Membr. Sci., 603, 10.1016/j.memsci.2020.118001 Song, 2020, CO2/N2 separation performance of Pebax/MIL-101 and Pebax/NH2-MIL-101 mixed matrix membranes and intensification via sub-ambient operation, Sep. Purif. Technol., 238, 10.1016/j.seppur.2020.116500 Sun, 2021, Nanofibers interpenetrating network mimicking "reinforced-concrete" to construct mechanically robust composite membrane for enhanced CO2 separation, J. Membr. Sci., 639, 10.1016/j.memsci.2021.119749 Wang, 2020, A MOF glass membrane for gas separation, Angew. Chem. Int. Ed., 59, 4365, 10.1002/anie.201915807 White, 2017, Extended field trials of Polaris sweep modules for carbon capture, J. Membr. Sci., 542, 217, 10.1016/j.memsci.2017.08.017 White, 2015, Extended flue gas trials with a membrane-based pilot plant at a one-ton-per-day carbon capture rate, J. Membr. Sci., 496, 48, 10.1016/j.memsci.2015.08.003 Wu, 2021, Membrane technology for CO2 capture: from pilot-scale investigation of two-stage plant to actual system design, J. Membr. Sci., 624, 10.1016/j.memsci.2021.119137 Xu, 2011, Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel, J. Membr. Sci., 385, 187, 10.1016/j.memsci.2011.09.040 Yan, 2019, Carbon capture, utilization and storage (CCUS), Appl. Energy, 235, 1289, 10.1016/j.apenergy.2018.11.019 Zhao, 2010, Multi-stage gas separation membrane processes used in post-combustion capture: energetic and economic analyses, J. Membr. Sci., 359, 160, 10.1016/j.memsci.2010.02.003 Zhong, 2015, Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties, J. Mater. Chem. A, 3, 15715, 10.1039/C5TA03707G Zhu, 2022, One-step synthesis of structurally stable CO2-philic membranes with ultra-high PEO loading for enhanced carbon capture, Engineering, 10.1016/j.eng.2022.03.016 Zhu, 2020, Rational design of poly(ethylene oxide) based membranes for sustainable CO2 capture, J. Mater. Chem. A, 8, 24233, 10.1039/D0TA08806D