Simulation of a novel hybrid membrane-cryogenic process for post-combustion carbon capture
Tài liệu tham khảo
Anantharaman, R., Berstad, D., Roussanaly, S., 2014. Techno-economic performance of a hybrid membrane - liquefaction process for post-combustion CO2 capture, in: 6th International Conference on Applied Energy (ICAE), Taipei, TAIWAN, pp. 1244-1247. doi:10.1016/j.egypro.2014.11.1068.
Baker, 2017, CO2 capture from natural gas power plants using selective exhaust gas recycle membrane designs, Int. J. Greenh. Gas Control., 66, 35, 10.1016/j.ijggc.2017.08.016
Baker, 2014, Gas separation membrane materials: a perspective, Macromolecules, 47, 6999, 10.1021/ma501488s
Chiwaye, 2021, On optimisation of N2 and CO2-selective hybrid membrane process systems for post-combustion CO2 capture from coal-fired power plants, J. Membr. Sci., 638, 10.1016/j.memsci.2021.119691
DOE/NETL, 2012. IECM technical documentation: membrane-based CO2 capture systems for coal-fired power plants. https://www.cmu.edu/epp/iecm/documentation/IECM.20Membrane.20Tech.20Report.20September.202012.pdf.
DOE/NETL, 2016. Pilot testing of a membrane system for post-combustion CO2 capture. doi:10.2172/1337555.
DOE/OSTI, 2015. Pilot testing of a membrane system for postcombustion CO2 capture. https://www.osti.gov/servlets/purl/1337555.
Gizaw, 2020, Fabrication and characterization of nitrogen selective thin-film metallic glass/polyacrylonitrile composite membrane for gas separation, Sep. Purif. Technol., 237, 10.1016/j.seppur.2019.116340
Hussain, 2015, Two-stage membrane system for post-combustion CO2 capture application, Energy Fuels, 29, 6664, 10.1021/acs.energyfuels.5b01464
Ji, 2021, Remarkably enhanced gas separation properties of PIM-1 at sub-ambient temperatures, J. Membr. Sci., 623, 10.1016/j.memsci.2021.119091
Jiang, 2019, Penetrating chains mimicking plant root branching to build mechanically robust, ultra-stable CO2-philic membranes for superior carbon capture, J. Mater. Chem. A, 7, 16704, 10.1039/C9TA03416A
Jin, 2020, Effective separation of CO2 using metal-incorporated rGO membranes, Adv. Mater., 32, 10.1002/adma.201907580
Lee, 2022, Understanding and improving the modular properties of high-performance SSZ-13 membranes for effective flue gas treatment, J. Membr. Sci., 646, 10.1016/j.memsci.2021.120246
Lee, 2019, Development of novel sub-ambient membrane systems for energy-efficient post-combustion CO2 capture, Appl. Energy, 238, 1060, 10.1016/j.apenergy.2019.01.130
Li, 2019, Oriented Zeolitic imidazolate framework membranes within polymeric matrices for effective N2/CO2 separation, J. Membr. Sci., 572, 82, 10.1016/j.memsci.2018.10.086
Li, 2022, Techno-economic evaluation of a novel membrane-cryogenic hybrid process for carbon capture, Appl. Therm. Eng., 200, 10.1016/j.applthermaleng.2021.117688
Liu, 2016, Post-combustion carbon dioxide capture via 6FDA/BPDA-DAM hollow fiber membranes at sub-ambient temperatures, J. Membr. Sci., 510, 447, 10.1016/j.memsci.2016.03.027
Low, 2013, A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas, J. Membr. Sci., 431, 139, 10.1016/j.memsci.2012.12.014
Merkel, 2010, Power plant post-combustion carbon dioxide capture: an opportunity for membranes, J. Membr. Sci., 359, 126, 10.1016/j.memsci.2009.10.041
Norhasyima, 2018, Advances in CO2 utilization technology: a patent landscape review, J. CO2 Util., 26, 323, 10.1016/j.jcou.2018.05.022
Park, 2017, Maximizing the right stuff: The trade-off between membrane permeability and selectivity, Science, 356, 6343, 10.1126/science.aab0530
Ramirez-Santos, 2017, Utilization of blast furnace flue gas: opportunities and challenges for polymeric membrane gas separation processes, J. Membr. Sci., 526, 191, 10.1016/j.memsci.2016.12.033
Raupach, 2007, Global and regional drivers of accelerating CO2 emissions, Proc. Natl. Acad. Sci. USA, 104, 10288, 10.1073/pnas.0700609104
Ren, 2020, Hybrid membrane process for post-combustion noteCO2 capture from coal-fired power plant, J. Membr. Sci., 603, 10.1016/j.memsci.2020.118001
Song, 2020, CO2/N2 separation performance of Pebax/MIL-101 and Pebax/NH2-MIL-101 mixed matrix membranes and intensification via sub-ambient operation, Sep. Purif. Technol., 238, 10.1016/j.seppur.2020.116500
Sun, 2021, Nanofibers interpenetrating network mimicking "reinforced-concrete" to construct mechanically robust composite membrane for enhanced CO2 separation, J. Membr. Sci., 639, 10.1016/j.memsci.2021.119749
Wang, 2020, A MOF glass membrane for gas separation, Angew. Chem. Int. Ed., 59, 4365, 10.1002/anie.201915807
White, 2017, Extended field trials of Polaris sweep modules for carbon capture, J. Membr. Sci., 542, 217, 10.1016/j.memsci.2017.08.017
White, 2015, Extended flue gas trials with a membrane-based pilot plant at a one-ton-per-day carbon capture rate, J. Membr. Sci., 496, 48, 10.1016/j.memsci.2015.08.003
Wu, 2021, Membrane technology for CO2 capture: from pilot-scale investigation of two-stage plant to actual system design, J. Membr. Sci., 624, 10.1016/j.memsci.2021.119137
Xu, 2011, Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel, J. Membr. Sci., 385, 187, 10.1016/j.memsci.2011.09.040
Yan, 2019, Carbon capture, utilization and storage (CCUS), Appl. Energy, 235, 1289, 10.1016/j.apenergy.2018.11.019
Zhao, 2010, Multi-stage gas separation membrane processes used in post-combustion capture: energetic and economic analyses, J. Membr. Sci., 359, 160, 10.1016/j.memsci.2010.02.003
Zhong, 2015, Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties, J. Mater. Chem. A, 3, 15715, 10.1039/C5TA03707G
Zhu, 2022, One-step synthesis of structurally stable CO2-philic membranes with ultra-high PEO loading for enhanced carbon capture, Engineering, 10.1016/j.eng.2022.03.016
Zhu, 2020, Rational design of poly(ethylene oxide) based membranes for sustainable CO2 capture, J. Mater. Chem. A, 8, 24233, 10.1039/D0TA08806D