Tối ưu hóa thiết kế cấu trúc trong dòng chảy dựa trên mô phỏng: Các ván đá

A. Khosronejad1, J. L. Kozarek2, P. Diplas3, C. Hill4, R. Jha5, P. Chatanantavet6, N. Heydari3, F. Sotiropoulos1
1Civil Engineering Department, Stony Brook University, Stony Brook, USA
2St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, USA
3Civil and Environmental Engineering Department, Lehigh University, Bethlehem, USA
4Department of Mechanical Engineering, University of Washington, Seattle, USA
5Water Wastewater Consultant, EMA Inc., St. Paul, USA
6University of Arizona, Tucson, USA

Tóm tắt

Chúng tôi áp dụng mô hình động lực học thủy lực kết hợp ba chiều, Mô phỏng Dòng chảy Ảo (VFS-Geophysics) ở chế độ Navier–Stokes trung bình Reynolds không ổn định, đóng với mô hình $$k-\omega$$ để mô phỏng dòng chảy hỗn loạn và vận chuyển sediment trong các dòng nước có đáy cát và sỏi quy mô lớn dưới các điều kiện mô hình và đáy sống. Kết quả mô phỏng được sử dụng để thực hiện các thí nghiệm số hệ thống nhằm phát triển hướng dẫn thiết kế cho các cấu trúc ván đá. Mô hình số này dựa trên phương pháp Biên Giới Ngâm cong để mô phỏng dòng chảy và quy trình vận chuyển sediment trong các con sông có hình dáng phức tạp với các cấu trúc đá nhúng bên trong. Ba trường hợp kiểm tra xác nhận được thực hiện để xem xét khả năng của mô hình trong việc bắt giữ dòng chảy hỗn loạn và vận chuyển sediment trong các kênh ở đáy di động. Việc vận chuyển vật liệu sediment được xử lý bằng cách sử dụng phương trình Exner kết hợp với phương trình vận chuyển cho tải lơ lửng. Hai con sông ngoằn ngoèo tiêu biểu, với đáy sỏi và cát, lần lượt được chọn làm bãi thử ảo để phát triển các hướng dẫn thiết kế cho các cấu trúc ván đá. Các đặc điểm của những con sông này được chọn dựa trên dữ liệu thực địa sẵn có. Ban đầu, theo sự hướng dẫn của các hướng dẫn thiết kế hiện có, chúng tôi xem xét nhiều cách bố trí của các cấu trúc ván đá một cách tính toán để xác định đặc điểm thiết kế và đặt cấu trúc tối ưu cho một hệ thống sông nhất định.

Từ khóa

#mô phỏng dòng chảy #cấu trúc trong dòng chảy #ván đá #vận chuyển sediment #mô hình thủy động lực học

Tài liệu tham khảo

Abad J, Rhoads B, Guneralp I, Garcia M (2008) Flow structure at different stages in a meander-bend with bendway weirs. J Hydraul Eng 134(8):1052–1063 Ashley G (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem. J Sediment Petrol 60:160–172 Bhuiyan F, Hey R, Wormleaton P (2009) Effects of vanes and w-weir on sediment transport in meandering channels. J Hydraul Eng 135(5):339–349 Blanckaert K (2009) Saturation of curvature-induced secondary flow, energy losses, and turbulence in sharp open-channel bends: laboratory experiments, analysis, and modeling. J Geophys Res 114:F03015 Blanckaert K (2010) Topographic steering, flow recirculation, velocity redistribution, and bed topography in sharp meander bends. Water Resour Res 46:W09506 Borazjani I, Ge L, Sotiropoulos F (2008) Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J Comput Phys 227:7587–7620 Chou YJ, Fringer OB (2008) Modeling dilute sediment suspension using large-eddy simulation with a dynamic mixed model. Phys Fluids 20:115103 Church M, Rood K (1983) Catalogue of alluvial river regime data. Technical report on University of British Columbia Crispell JK, Endreny T (2009) Hyporheic exchange flow around constructed in-channel structures and implications for restoration design. Hydrol Process 23(8):1158–1168. https://doi.org/10.1002/hyp.7230 Crowley KD (1983) Large-scale bed configurations (macroforms), platte river basin, colorado and nebraska: primary structures and formative processes. Geol Soc Am Bull 94(1):117–133. https://doi.org/10.1130/0016-7606(1983)94<117:LBCMPR>2.0.CO;2 Dietrich W, Day G, Parker G (1999) The fly river, papua new guinea: inferences about river dynamics, floodplain sedimentation and fate of sediment. In: Varieties of fluvial form, chap. Wiley Doll B, Grabow G, Hall K, Halley J, Harman W, Jennings G, Wise D (2003) Stream restoration: a natural channel design handbook. Technical reports on NC State University, Raleigh, NC Endreny TA, Soulman M (2011) Hydraulic analysis of river taining cross-vanes as part of post-restoration monitoring. Hydrol Earth Syst Sci 15:2119. https://doi.org/10.5194/hess-15-2119-2011 Engelund F, Fredsoe J (1982) Sediment ripples and dunes. Ann Rev Fluid Mech 14:13–37 Ge L, Sotiropoulos F (2007) A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J Comput Phys 225:1782–1809 Han B, Chu H, Endreny T (2015) Streambed and water profile response to in-channel restoration structures in a laboratory meandering stream. Water Resour Res 51(11):9312–9324 Holmes RR, Garcia M (2008) Flow over bedforms in a large sand-bed river: a field investigation. J Hydraul Res 46(3):322–333 Jamieson E, Ruta M, Rennie C, Townsend R (2013) Monitoring stream barb performance in a semi-alluvial meandering channel: flow field dynamics and morphology. Ecohydrology 6(4):611–626 Jia Y, Xu Y, Wang S (2002) Numerical simulation of local scouring around a cylindrical pier. In: Proceedings of ICSF-1, 1st international conference on scour of foundations. Texas A&M University, Texas Johannesson H, Parker G (1988) Proceedings: flow field and bed topography in river meanders. In: National conference on hydraulic engineering. ASCE Johnson PA, Hey RD, Brown ER, Rosgen DL (2002) Stream restoration in the vicinity of bridges. J Am Water Resour Assoc 38:55–67 Johnson PA, Hey RD, Rosgen DL (2001) Use of vanes for control of scour at vertical wall abutments. J Hydraul Eng 127(9):772–778 Kang S, Lightbody A, Hill C, Sotiropoulos F (2011) High-resolution numerical simulation of turbulence in natural waterways. Adv Water Resour 34(1):98–113 Kang S, Sotiropoulos F (2011) Flow phenomena and mechanisms in a field-scale experimental meandering channel with a pool-riffle sequence: insights gained via numerical simulation. J Geophys Res 116:F0301 Khosronejad A, Diplas P, Sotiropoulos F (2017) Simulation-based approach for in-stream structures design: bendway weirs. J Environ Fluid Mech 17(1):1–31. https://doi.org/10.1007/s10652-016-9452-5 Khosronejad A, Hill C, Kang S, Sotiropoulos F (2013) Computational and experimental investigation of scour past laboratory models of stream restoration rock structures. Adv Water Resour 54:191–207 Khosronejad A, Kang S, Borazjani I, Sotiropoulos F (2011) Curvilinear immersed boundary method for simulating coupled flow and bed morphodynamic interactions due to sediment transport phenomena. Adv Water Resour 34(7):829–843 Khosronejad A, Kang S, Sotiropoulos F (2012) Experimental and computational investigation of local scour around bridge piers. Adv Water Resour 37:73–85 Khosronejad A, Kozarek J, Diplas P, Sotiropoulos F (2015) Simulation-based approach for in-stream structure design: J-hook vane structures. J Hydraul Res 53(5):588–608. https://doi.org/10.1080/00221686.2015.1093037 Khosronejad A, Kozarek J, Palmsted M, Sotiropoulos F (2015) Numerical simulation of large dunes in meandering streams and rivers with in-stream rock structures. Adv Water Resour 81:45–61 Khosronejad A, Kozarek JL, Sotiropoulos F (2014) Simulation-based approach for stream restoration structure design: model development and validation. J Hydraul Eng 140(7):1–16 Khosronejad A, Sotiropoulos F (2014) Numerical simulation of sand waves in a turbulent open channel flow. J Fluid Mech 753:150–216 Khosronejad A, Sotiropoulos F (2017) On the genesis and evolution of barchan dunes: morphodynamics. J Fluid Mech 815:117–148 Kostaschuk R, Villard P (1996) Flow and sediment transport over large subaqueous dunes: Fraser River, Canada. Sedimentology 43:849–863 Kuhnle RA, Alonso VC, Shields DF (1999) Geometry of scour holes associated with \(90^{\circ }\) spur dikes. J Hydraul Eng 125(9):972–978 Lee HJ, Syvitski JP, Parker G, Orange d, Locat J, Hutton E, Imran J (2002) Distinguishing sediment waves from slope failure deposits: field examples, including the ’Humboldt slide’, and modelling results. Mar Geol 192:79–104 Marelius F, Sinha SK (1998) Experimental investigation of flow past submerged vanes. J Hydraul Eng 124(5):542–545 McCullah J, Gray D (2005) Environmentally sensitive channel and bank-protection measures. Technicla reports on National Cooperative Highway Research Program (NCHRP). Transportation Research Board, Washington, DC MWCG: Maryland waterway construction guidelines (2000) Techical reports, Water Management Administration, Maryland Department of the Environment Nittrouer J, Allison M, Campanella R (2008) Bedload transport rates for the lowermost Mississippi River. J Geophys Res. https://doi.org/10.1029/2007JF000795 Nittrouer JA, Mohrig D, Allison MA (2011) Punctuated sand transport in the lowermost Mississippi River. J Geophys Res 116:F04025 NRCS: Stream restoration design, NEH 654. Technical reports on United States Department of Agriculture. National Resource Conservation Service, Washington, DC (2007) Paola C, Voller VR (2005) A generalized exner equation for sediment mass balance. J Geophys Res 110:F04014 Parker G, Wilcock PR, Paola C, Dietrich WE, Pitlick J (2007) Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers. J Geophys Res Earth Surf 112:F04005 Radspinner RR, Diplas P, Lightbody AF, Sotiropoulos F (2010) River training and ecological enhancement potential using in-stream structures. J Hydraul Eng 136:967–980. https://doi.org/10.1061/(asce)hy.1943-7900.0000260 Raudkivi AJ (1967) Loose boundary hydraulics. Pergamon Press, Oxford Rosgen DL (2006) Cross vane, w-weir, and J-hook vane structures. Technical reports, Wildland Hydrology, Pagosa Springs, CO Sotiropoulos F, Diplas P (2014) Design methods for in-stream flow control structures. In: Technical reports, transportation research board. National Academies of Science, Washington, DC Sotiropoulos F, Khosronejad A (2016) Multi-scale sand waves in environmental flows: insights gained by coupling large-eddy simulation with morphodynamics. Phys Fluids 28:021301. https://doi.org/10.1063/1.4939987 Tang X, Knight D (2006) Sediment transport in river models with overbank flows. J Hydraul Eng 132(1):77–86 Van Rijn LC (1984c) Sediment transport, part iii: bed forms and alluvial roughness. J Hydraul Eng 110(12):1733–1754 Van Rijn LC (1993) Principles of sediment transport in rivers, estuaries, and coastal seas. Aqua Publications, Blokzijl Wilcox DC (1994) Simulation of transition with two-equation trurbulence model. Am Inst Aeronaut Astronaut J 42(2):247–255 Wilkerson GV, Parker G (2011) Physical basis for quasi-universal relations describing bankfull hydraulic geometry for single-thread sand-bed rivers. J Hydraul Eng 137(7):739–753 Wu W, Rodi W, Wenka T (2000) 3D numerical modeling of flow and sediment transport in open channels. J Hydraul Eng 126(1):4–15 Zedler EA, Street RL (2001) Large-eddy simulation of sediment transport: currents over ripples. J Hydraul Eng 127(6):444–452 Zhou T, Endreny TA (2012) Meander hydrodynamics initiated by river restoration deflectors. Hydrol Process 26(22):3378–3392 Zhou T, Endreny TA (2013) Reshaping of the hyporheic zone beneath river restoration structures: flume and hydrodynamic experiments. Water Resour Res 49(8):5009–5020. https://doi.org/10.1002/wrcr.20384