Simulation and comparative analysis of binding modes of nucleoside and non-nucleoside agonists at the A2B adenosine receptor

In Silico Pharmacology - Tập 1 - Trang 1-14 - 2013
Diego Dal Ben1, Michela Buccioni1, Catia Lambertucci1, Ajiroghene Thomas1, Rosaria Volpini1
1School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy

Tóm tắt

A2B receptor agonists are studied as possible therapeutic tools for a variety of pathological conditions. Unfortunately, medicinal chemistry efforts have led to the development of a limited number of potent agonists of this receptor, in most cases with a low or no selectivity versus the other adenosine receptor subtypes. Among the developed molecules, two structural families of compounds have been identified based on nucleoside and non-nucleoside (pyridine) scaffolds. The aim of this work is to analyse the binding mode of these molecules at 3D models of the human A2B receptor to identify possible common interaction features and the key receptor residues involved in ligand interaction. The A2B receptor models are built by using two recently published crystal structures of the human A2A receptor in complex with two different agonists. The developed models are used as targets for molecular docking studies of nucleoside and non-nucleoside agonists. The generated docking conformations are subjected to energy minimization and rescoring by using three different scoring functions. Further analysis of top-score conformations are performed with a tool evaluating the interaction energy between the ligand and the binding site residues. Results suggest a set of common interaction points between the two structural families of agonists and the receptor binding site, as evidenced by the superimposition of docking conformations and by analysis of interaction energy with the receptor residues. The obtained results show that there is a conserved pattern of interaction between the A2B receptor and its agonists. These information and can provide useful data to support the design and the development of A2B receptor agonists belonging to nucleoside or non-nucleoside structural families.

Tài liệu tham khảo

Ansari HR, Nadeem A, Talukder MA, Sakhalkar S, Mustafa SJ: Evidence for the involvement of nitric oxide in A 2B receptor-mediated vasorelaxation of mouse aorta. Am J Physiol Heart Circ Physiol 2007, 292: H719-H725. Ballesteros JA, Weinstein H: Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 1995, 25: 366–428. Baraldi PG, Preti D, Tabrizi MA, Fruttarolo F, Romagnoli R, Carrion MD, Cara LC, Moorman AR, Varani K, Borea PA: Synthesis and biological evaluation of novel 1-deoxy-1-[6-[((hetero)arylcarbonyl)hydrazino]- 9 H -purin-9-yl]- N -ethyl- b -D-ribofuranuronamide derivatives as useful templates for the development of A 2B adenosine receptor agonists. J Med Chem 2007, 50: 374–380. 10.1021/jm061170a Baraldi PG, Preti D, Tabrizi MA, Fruttarolo F, Saponaro G, Baraldi S, Romagnoli R, Moorman AR, Gessi S, Varani K, Borea PA: N6-[(hetero)aryl/(cyclo)alkyl-carbamoyl-methoxy-phenyl]-(2-chloro)-5′- N -ethylcarboxamido-adenosines: the first example of adenosine-related structures with potent agonist activity at the human A 2B adenosine receptor. Bioorg Med Chem 2007, 15: 2514–2527. 10.1016/j.bmc.2007.01.055 Baraldi PG, Tabrizi MA, Fruttarolo F, Romagnoli R, Preti D: Recent improvements in the development of A 2B adenosine receptor agonists. Purinergic Signal 2009, 5: 3–19. 10.1007/s11302-009-9140-8 Beukers MW, den Dulk H, van Tilburg EW, Brouwer J, IJzerman AP: Why are A 2B receptors low-affinity adenosine receptors? Mutation of Asn273 to Tyr increases affinity of human A 2B receptor for 2-(1-Hexynyl)adenosine. Mol Pharmacol 2000, 58: 1349–1356. Beukers MW, Chang LC, von Frijtag Drabbe Kunzel JK, Mulder-Krieger T, Spanjersberg RF, Brussee J, IJzerman AP: New, non-adenosine, high-potency agonists for the human adenosine A 2B receptor with an improved selectivity profile compared to the reference agonist N-ethylcarboxamidoadenosine. J Med Chem 2004, 47: 3707–3709. 10.1021/jm049947s Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 1995, 117: 5179–5197. 10.1021/ja00124a002 Costanzi S, Ivanov AA, Tikhonova IG, Jacobson KA: Structure and function of g protein-coupled receptors studied using sequence analysis, molecular modelling and receptor engineering: adenosine receptors. Front Drug Des Discov 2007, 3: 63–79. Cristalli G, Volpini R: Adenosine receptors: chemistry and pharmacology. Curr Top Med Chem 2003, 3: 355–469. 10.2174/1568026033392165 Dal Ben D, Buccioni M, Lambertucci C, Marucci G, Thomas A, Volpini R, Cristalli G: Molecular modelling study on potent and selective adenosine A 3 receptor agonists. Bioorg Med Chem 2010, 18: 7923–7930. 10.1016/j.bmc.2010.09.038 Dal Ben D, Lambertucci C, Marucci G, Volpini R, Cristalli G: Adenosine receptor modelling: what does the A 2A crystal structure tell us? Curr Top Med Chem 2010, 10: 993–1018. 10.2174/156802610791293145 Dal Ben D, Buccioni M, Lambertucci C, Kachler S, Falgner N, Marucci G, Thomas A, Cristalli G, Volpini R, Klotz K-N: Different efficacy of adenosine and NECA derivatives at the human A 3 adenosine receptor: insight into the receptor activation switch. Biochem Pharmacol 2013. doi: 10.1016/j.bcp.2013.10.011 Dore AS, Robertson N, Errey JC, Ng I, Hollenstein K, Tehan B, Hurrell E, Bennett K, Congreve M, Magnani F, Tate CG, Weir M, Marshall FH: Structure of the adenosine A 2A receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 2011, 19: 1283–1293. 10.1016/j.str.2011.06.014 Dubey RK, Gillespie DG, Mi Z, Jackson EK: Adenosine inhibits PDGF-induced growth of human glomerular mesangial cells via A 2B receptors. Hypertension 2005, 46: 628–634. 10.1161/01.HYP.0000178464.63393.88 Eckle T, Krahn T, Grenz A, Kohler D, Mittelbronn M, Ledent C, Jacobson MA, Osswald H, Thompson LF, Unertl K, Eltzschig HK: Cardioprotection by ecto-5′-nucleotidase (CD73) and A 2B adenosine receptors. Circulation 2007, 115: 1581–1590. 10.1161/CIRCULATIONAHA.106.669697 Feoktistov I, Biaggioni I: Adenosine A 2B receptors. Pharmacol Rev 1997, 49: 381–402. Feoktistov I, Ryzhov S, Goldstein AE, Biaggioni I: Mast cell-mediated stimulation of angiogenesis: cooperative interaction between A 2B and A 3 adenosine receptors. Circ Res 2003, 92: 485–492. 10.1161/01.RES.0000061572.10929.2D Feoktistov I, Ryzhov S, Zhong H, Goldstein AE, Matafonov A, Zeng D, Biaggioni I: Hypoxia modulates adenosine receptors in human endothelial and smooth muscle cells toward an A 2B angiogenic phenotype. Hypertension 2004, 44: 649–654. 10.1161/01.HYP.0000144800.21037.a5 Fredholm BB, IJzerman AP, Jacobson KA, Klotz K-N, Linden J: International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 2001, 53: 527–552. Gao ZG, Jacobson KA: Emerging adenosine receptor agonists. Expert Opin Emerg Drugs 2007, 12: 479–492. 10.1517/14728214.12.3.479 Gao ZG, Mamedova LK, Chen P, Jacobson KA: 2-Substituted adenosine derivatives: affinity and efficacy at four subtypes of human adenosine receptors. Biochem Pharmacol 2004, 68: 1985–1993. 10.1016/j.bcp.2004.06.011 Halgren TA: Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 1996, 17: 490–519. 10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P Halgren TA: Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J Comput Chem 1996, 17: 520–552. 10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W Halgren TA: Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J Comput Chem 1996, 17: 553–586. 10.1002/(SICI)1096-987X(199604)17:5/6<553::AID-JCC3>3.0.CO;2-T Halgren TA: Merck molecular force field. IV. Conformational energies and geometries for MMFF94. J Comput Chem 1996, 17: 587–615. Halgren TA: MMFF VI. MMFF94s option for energy minimization studies. J Comput Chem 1999, 20: 720–729. 10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X Halgren TA: MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J Comput Chem 1999, 20: 730–748. 10.1002/(SICI)1096-987X(199905)20:7<730::AID-JCC8>3.0.CO;2-T Halgren TA, Nachbar R: Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J Comput Chem 1996, 17: 616–641. 10.1002/(SICI)1096-987X(199604)17:5/6<616::AID-JCC5>3.0.CO;2-X Hino T, Arakawa T, Iwanari H, Yurugi-Kobayashi T, Ikeda-Suno C, Nakada-Nakura Y, Kusano-Arai O, Weyand S, Shimamura T, Nomura N, Cameron AD, Kobayashi T, Hamakubo T, Iwata S, Murata T: G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 2012, 482: 237–240. Hinschen AK, Rose’Meyer RB, Headrick JP: Adenosine receptor subtypes mediating coronary vasodilation in rat hearts. J Cardiovasc Pharmacol 2003, 41: 73–80. 10.1097/00005344-200301000-00010 Inamdar GS, Pandya AN, Thakar HM, Sudarsanam V, Kachler S, Sabbadin D, Moro S, Klotz K-N, Vasu KK: New insight into adenosine receptors selectivity derived from a novel series of [5-substituted-4-phenyl-1,3-thiazol-2-yl] benzamides and furamides. Eur J Med Chem 2013, 63: 924–934. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, IJzerman AP, Stevens RC: The 2.6 angstrom crystal structure of a human A 2A adenosine receptor bound to an antagonist. Science 2008, 322: 1211–1217. 10.1126/science.1164772 Kemp BK, Cocks TM: Adenosine mediates relaxation of human small resistance-like coronary arteries via A 2B receptors. Br J Pharmacol 1999, 126: 1796–1800. 10.1038/sj.bjp.0702462 Kreckler LM, Wan TC, Ge ZD, Auchampach JA: Adenosine inhibits tumor necrosis factor-alpha release from mouse peritoneal macrophages via A 2A and A 2B but not the A 3 adenosine receptor. J Pharmacol Exp Ther 2006, 317: 172–180. Kuno A, Critz SD, Cui L, Solodushko V, Yang XM, Krahn T, Albrecht B, Philipp S, Cohen MV, Downey JM: Protein kinase C protects preconditioned rabbit hearts by increasing sensitivity of adenosine A 2B -dependent signaling during early reperfusion. J Mol Cell Cardiol 2007, 43: 262–271. 10.1016/j.yjmcc.2007.05.016 Lambertucci C, Volpini R, Costanzi S, Taffi S, Vittori S, Cristalli G: 2-Phenylhydroxypropynyladenosine derivatives as high potent agonists at A 2B adenosine receptor subtype. Nucleos Nucleot Nucl Acids 2003, 22: 809–812. 10.1081/NCN-120022640 Lane JR, Klein Herenbrink C, van Westen GJ, Spoorendonk JA, Hoffmann C, IJzerman AP: A novel nonribose agonist, LUF5834, engages residues that are distinct from those of adenosine-like ligands to activate the adenosine A 2A receptor. Mol Pharmacol 2012, 81: 475–487. 10.1124/mol.111.075937 Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AG, Tate CG: Agonist-bound adenosine A 2A receptor structures reveal common features of GPCR activation. Nature 2011, 474: 521–525. 10.1038/nature10136 Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, IJzerman AP, Cherezov V, Stevens RC: Structural basis for allosteric regulation of GPCRs by sodium ions. Science 2012, 337: 232–236. 10.1126/science.1219218 Molecular Operating Environment C.C.G., Inc: 1255 University St., Suite 1600. Montreal, Quebec, Canada: H3B 3X3; Philipp S, Yang XM, Cui L, Davis AM, Downey JM, Cohen MV: Postconditioning protects rabbit hearts through a protein kinase C-adenosine A 2B receptor cascade. Cardiovasc Res 2006, 70: 308–314. 10.1016/j.cardiores.2006.02.014 Robeva AS, Woodard RL, Jin X, Gao Z, Bhattacharya S, Taylor HE, Rosin DL, Linden J: Molecular characterization of recombinant human adenosine receptors. Drug Dev Res 1996, 39: 243–252. 10.1002/(SICI)1098-2299(199611/12)39:3/4<243::AID-DDR3>3.0.CO;2-R Rosentreter U, Henning R, Bauser M, Krämer T, Vaupel A, Hübsch W, Dembowsky K, Salcher-Schraufstätter O, Stasch JP, Krahn T, Perzborn E: Substituted 2-Thio-3,5-Dicyano-4-Aryl-6-Aminopyridines and the use Thereof as Adenosine Receptor Ligands. 2001. WO/2001/025210 Rosentreter U, Kraemer T, Shimada M, Huebsch W, Diedrichs N, Krahn T, Henninger K, Stasch JP: Substituted 2-Thio-3,5-Dicyano-4-Phenyl-6-Aminopyridines and their use as Adenosine Receptor-Selective Ligands. 2003. WO/2003/008384 Schiedel AC, Hinz S, Thimm D, Sherbiny F, Borrmann T, Maass A, Müller CE: The four cysteine residues in the second extracellular loop of the human adenosine A 2B receptor: role in ligand binding and receptor function. Biochem Pharmacol 2011, 82: 389–399. 10.1016/j.bcp.2011.05.008 Shadnia H, Wright JS, Anderson JM: Interaction force diagrams: new insight into ligand-receptor binding. J Comput Aided Mol Des 2009, 23: 185–194. 10.1007/s10822-008-9250-3 Sherbiny FF, Schiedel AC, Maass A, Müller CE: Homology modelling of the human adenosine A 2B receptor based on X-ray structures of bovine rhodopsin, the β 2 -adrenergic receptor and the human adenosine A 2A receptor. J Comput Aided Mol Des 2009, 23: 807–828. 10.1007/s10822-009-9299-7 Stewart JJ: MOPAC: a semiempirical molecular orbital program. J Comput Aided Mol Des 1990, 4: 1–105. 10.1007/BF00128336 Thimm D, Schiedel AC, Sherbiny FF, Hinz S, Hochheiser K, Bertarelli DCG, Maass A, Müller CE: Ligand-specific binding and activation of the human adenosine A 2B receptor. Biochemistry 2013, 52: 726–740. 10.1021/bi3012065 van der Hoeven D, Wan TC, Gizewski ET, Kreckler LM, Maas JE, Van Orman J, Ravid K, Auchampach JA: A role for the low-affinity A 2B adenosine receptor in regulating superoxide generation by murine neutrophils. J Pharmacol Exp Ther 2011, 338: 1004–1012. 10.1124/jpet.111.181792 Volpini R, Costanzi S, Lambertucci C, Taffi S, Vittori S, Klotz KN, Cristalli G: N6-alkyl-2-alkynyl derivatives of adenosine as potent and selective agonists at the human adenosine A 3 receptor and a starting point for searching A 2B ligands. J Med Chem 2002, 45: 3271–3279. 10.1021/jm0109762 Volpini R, Costanzi S, Vittori S, Cristalli G, Klotz K-N: Medicinal chemistry and pharmacology of A 2B adenosine receptors. Curr Top Med Chem 2003, 3: 427–443. 10.2174/1568026033392264 Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, Cherezov V, Stevens RC: Structure of an agonist-bound human A 2A adenosine receptor. Science 2011, 332: 322–327. 10.1126/science.1202793