Simulation and analysis of 2D material/metal carbide based fiber optic SPR probe for ultrasensitive cortisol detection

Optik - Tập 218 - Trang 164891 - 2020
Anuj K. Sharma1, Baljinder Kaur1, Carlos Marques2
1Department of Applied Sciences (Physics Division), National Institute of Technology Delhi, Narela, Delhi 110040, India
2I3N, Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal

Tài liệu tham khảo

Maier, 2007 Kretzschmann, 1968, Radiative decay of non-radiative surface plasmons by light, Z. Naturforsch, 23, 2135, 10.1515/zna-1968-1247 Mustafa, 2018, Chemical and biological sensors for food-quality monitoring and smart packaging, Foods, 7, 168, 10.3390/foods7100168 Sharma, 2007, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review, IEEE Sens. J., 7, 1118, 10.1109/JSEN.2007.897946 Sharma, 2018, A Review of advancements (2007–2017) in plasmonics-based optical fiber sensors, Opt. Fiber Technol., 43, 20, 10.1016/j.yofte.2018.03.008 Berini, 2006, Figures of merit for surface plasmon waveguides, Opt. Express, 14, 13030, 10.1364/OE.14.013030 Hamola, 2008, Surface plasmon resonance sensors for detection of chemical and biological species, Chem. Rev., 108, 462, 10.1021/cr068107d Lemes, 2016, Analysis of serum cortisol levels by Fourier Transform Infrared Spectroscopy for diagnosis of stress in athletes, Rev. Bras. Eng. Biomed., 32, 293 Kaushik, 2014, Recent advances in cortisol sensing technologies for point-of-care application, Biosens. Bioelectron., 53, 499, 10.1016/j.bios.2013.09.060 Hwang, 2016, An optical sensing approach for the noninvasive transdermal monitoring of cortisol, Proc. SPIE Nanoscale Imaging, Sensing, Actuation Biomed. Appl. XIII, vol. 9721, 97210B Mitchell, 2009, Rapid ultrasensitive measurement of salivary cortisol using nano-linker chemistry coupled with surface plasmon resonance detection, Analyst, 134, 380, 10.1039/B817083P Stevens, 2011, Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system, Anal. Chem., 46, 564 Sharma, 2018, Fiber optic SPR sensing enhancement in NIR via optimum radiation damping catalyzed by 2D materials, IEEE Photon. Technol. Lett., 1135 Zhang, 2015, Ultrathin two-dimensional nanomaterials, ACS Nano, 9, 9451, 10.1021/acsnano.5b05040 Wu, 2019, A 2D transition metal carbide MXene-based SPR biosensor for ultrasensitive carcinoembryonic antigen detection, Biosens. Bioelectron., 144, 111697, 10.1016/j.bios.2019.111697 Wu, 2018, Few-layer Ti3C2Tx MXene: A promising surface plasmon resonance biosensing material to enhance the sensitivity, Sens. Actuators B Chem., 277, 210, 10.1016/j.snb.2018.08.154 Berdiyorov, 2016, Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: First-principles calculations, AIP Adv., 6, 10.1063/1.4948799 Xu, 2019, High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: a theoretical study, Nanomat, 9, 165, 10.3390/nano9020165 Hecht, 2002 Isayev, 2014, Optical properties of chalcogenide glassy semiconductor Se95Te5 doped by samarium, Fizika, 20, 25 Ishigure, 2000, Optimum index profile of the perfluorinated polymer-based GI polymer optical fiber and its dispersion properties, J. Lightwave Technol., 18, 178, 10.1109/50.822790 Rakic, 1998, Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt., 37, 5271, 10.1364/AO.37.005271 Weber, 2010, Optical constants of graphene measured by spectroscopic ellipsometry, Appl. Phys. Lett., 97, 91904, 10.1063/1.3475393 Beal, 1979, Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2, J. Phys. C Solid State Phys., 12, 881, 10.1088/0022-3719/12/5/017 Peng, 2016, Electronic structures and enhanced optical properties of blue phosphorene / transition metal dichalcogenides van der Waals heterostructures, Sci. Rep., 6, 2 Mao, 2011, Development and application of time-resolved surface plasmon resonance spectrometer, Am. J. Anal. Chem., 2, 589, 10.4236/ajac.2011.25067 2019 Chen, 2016, Surface plasmon resonance immunoassay for cortisol determination with a self-assembling denaturalised bovine serum albumin layer on surface plasmon resonance chip, Micro Nano Lett., 11, 20, 10.1049/mnl.2015.0344 Vasudev, 2013, An LTCC-based microfluidic system for label-free, electrochemical detection of cortisol, Sens. Actuators B: Chem., 182, 139, 10.1016/j.snb.2013.02.096 Kämäräinen, 2018, Disposable electrochemical immunosensor for cortisol determination in human saliva, Talanta, 188, 50, 10.1016/j.talanta.2018.05.039 Dalirirad, 2019, Aptamer-based lateral flow assay for point of care cortisol detection in sweat, Sens. Actuators, B Chem., 283, 79, 10.1016/j.snb.2018.11.161 Usha, 2017, A contemporary approach for design and characterization of fiber-optic-cortisol sensor tailoring LMR and ZnO/PPY molecularly imprinted film, Biosens. Bioelectron., 87, 178, 10.1016/j.bios.2016.08.040