Simulation and analysis of 2D material/metal carbide based fiber optic SPR probe for ultrasensitive cortisol detection
Tài liệu tham khảo
Maier, 2007
Kretzschmann, 1968, Radiative decay of non-radiative surface plasmons by light, Z. Naturforsch, 23, 2135, 10.1515/zna-1968-1247
Mustafa, 2018, Chemical and biological sensors for food-quality monitoring and smart packaging, Foods, 7, 168, 10.3390/foods7100168
Sharma, 2007, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review, IEEE Sens. J., 7, 1118, 10.1109/JSEN.2007.897946
Sharma, 2018, A Review of advancements (2007–2017) in plasmonics-based optical fiber sensors, Opt. Fiber Technol., 43, 20, 10.1016/j.yofte.2018.03.008
Berini, 2006, Figures of merit for surface plasmon waveguides, Opt. Express, 14, 13030, 10.1364/OE.14.013030
Hamola, 2008, Surface plasmon resonance sensors for detection of chemical and biological species, Chem. Rev., 108, 462, 10.1021/cr068107d
Lemes, 2016, Analysis of serum cortisol levels by Fourier Transform Infrared Spectroscopy for diagnosis of stress in athletes, Rev. Bras. Eng. Biomed., 32, 293
Kaushik, 2014, Recent advances in cortisol sensing technologies for point-of-care application, Biosens. Bioelectron., 53, 499, 10.1016/j.bios.2013.09.060
Hwang, 2016, An optical sensing approach for the noninvasive transdermal monitoring of cortisol, Proc. SPIE Nanoscale Imaging, Sensing, Actuation Biomed. Appl. XIII, vol. 9721, 97210B
Mitchell, 2009, Rapid ultrasensitive measurement of salivary cortisol using nano-linker chemistry coupled with surface plasmon resonance detection, Analyst, 134, 380, 10.1039/B817083P
Stevens, 2011, Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system, Anal. Chem., 46, 564
Sharma, 2018, Fiber optic SPR sensing enhancement in NIR via optimum radiation damping catalyzed by 2D materials, IEEE Photon. Technol. Lett., 1135
Zhang, 2015, Ultrathin two-dimensional nanomaterials, ACS Nano, 9, 9451, 10.1021/acsnano.5b05040
Wu, 2019, A 2D transition metal carbide MXene-based SPR biosensor for ultrasensitive carcinoembryonic antigen detection, Biosens. Bioelectron., 144, 111697, 10.1016/j.bios.2019.111697
Wu, 2018, Few-layer Ti3C2Tx MXene: A promising surface plasmon resonance biosensing material to enhance the sensitivity, Sens. Actuators B Chem., 277, 210, 10.1016/j.snb.2018.08.154
Berdiyorov, 2016, Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: First-principles calculations, AIP Adv., 6, 10.1063/1.4948799
Xu, 2019, High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: a theoretical study, Nanomat, 9, 165, 10.3390/nano9020165
Hecht, 2002
Isayev, 2014, Optical properties of chalcogenide glassy semiconductor Se95Te5 doped by samarium, Fizika, 20, 25
Ishigure, 2000, Optimum index profile of the perfluorinated polymer-based GI polymer optical fiber and its dispersion properties, J. Lightwave Technol., 18, 178, 10.1109/50.822790
Rakic, 1998, Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt., 37, 5271, 10.1364/AO.37.005271
Weber, 2010, Optical constants of graphene measured by spectroscopic ellipsometry, Appl. Phys. Lett., 97, 91904, 10.1063/1.3475393
Beal, 1979, Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2, J. Phys. C Solid State Phys., 12, 881, 10.1088/0022-3719/12/5/017
Peng, 2016, Electronic structures and enhanced optical properties of blue phosphorene / transition metal dichalcogenides van der Waals heterostructures, Sci. Rep., 6, 2
Mao, 2011, Development and application of time-resolved surface plasmon resonance spectrometer, Am. J. Anal. Chem., 2, 589, 10.4236/ajac.2011.25067
2019
Chen, 2016, Surface plasmon resonance immunoassay for cortisol determination with a self-assembling denaturalised bovine serum albumin layer on surface plasmon resonance chip, Micro Nano Lett., 11, 20, 10.1049/mnl.2015.0344
Vasudev, 2013, An LTCC-based microfluidic system for label-free, electrochemical detection of cortisol, Sens. Actuators B: Chem., 182, 139, 10.1016/j.snb.2013.02.096
Kämäräinen, 2018, Disposable electrochemical immunosensor for cortisol determination in human saliva, Talanta, 188, 50, 10.1016/j.talanta.2018.05.039
Dalirirad, 2019, Aptamer-based lateral flow assay for point of care cortisol detection in sweat, Sens. Actuators, B Chem., 283, 79, 10.1016/j.snb.2018.11.161
Usha, 2017, A contemporary approach for design and characterization of fiber-optic-cortisol sensor tailoring LMR and ZnO/PPY molecularly imprinted film, Biosens. Bioelectron., 87, 178, 10.1016/j.bios.2016.08.040