Simulating re-impacts from craters at the deepest location of Phobos to generate its blue spectral units

Icarus - Tập 354 - Trang 113997 - 2021
Hiroshi Kikuchi1
1Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-3-1 Yoshinodai, Sagamihara 252-5210, Japan

Tài liệu tham khảo

Asphaug, 1993, The Stickney impact of Phobos: a dynamical model, Icarus., 101, 144, 10.1006/icar.1993.1012 Ballouz, 2019, Surface refreshing of Martian moon Phobos by orbital eccentricity-driven grain motion, Nat. Geo., 12, 229, 10.1038/s41561-019-0323-9 Basilevsky, 2014, The surface geology and geomorphology of Phobos, Planet Space Sci., 102, 95, 10.1016/j.pss.2014.04.013 Basilevsky, 2015, Survival times of meter-sized rock boulders on the surface of airless bodies, Planet Space Sci., 117, 312, 10.1016/j.pss.2015.07.003 Burns, 1978, The dynamical evolution and origin of the Martian moons, Vistas Astron., 22, 193, 10.1016/0083-6656(78)90015-6 Dobrovolskis, 1980, Life near the Roche limit: behavior of ejecta from satellites close to planets, Icarus., 42, 422, 10.1016/0019-1035(80)90105-0 Durda, 2012, Detecting crater ejecta-blanket boundaries and constraining source crater regions for boulder tracks and elongated secondary craters on Eros, Meteo. Planet. Sci., 47, 1087, 10.1111/j.1945-5100.2012.01380.x Ernst, 2018, The small body mapping tool (SBMT) for accessing, visualizing, and analyzing spacecraft data in three dimensions, Lunar Planet. Sci. Conf., 49 Fraeman, 2014, Spectral absorptions on Phobos and Deimos in the visible/near infrared wavelengths and their compositional constraints, Icarus., 229, 196, 10.1016/j.icarus.2013.11.021 Gaskell, 2011 Geissler, 1996, Erosion and Ejecta Reaccretion on 243 Ida and its moon, Icarus., 120, 140, 10.1006/icar.1996.0042 Hemmi, 2020, Morphology and Morphometry of sub-kilometer craters on the nearside of Phobos and implications for regolith properties, Trans. Japan Soc. Aero. Space Sci., 63, 1, 10.2322/tjsass.63.124 Housen, 1983, Crater ejecta scaling laws: fundamental forms based on dimensional analysis, J. Geophys. Res. Solid Earth, 88, 2485, 10.1029/JB088iB03p02485 Karachevtseva, 2014, The Phobos information system, Planet Space Sci., 102, 74, 10.1016/j.pss.2013.12.015 Kawakatsu, 2017, Mission concept of martian moons exploration (MMX) Khan, 2018, A geophysical perspective on the bulk composition of Mars, J. Geophys. Res. Planets., 123, 575, 10.1002/2017JE005371 Konopliv, 2016, An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data, Icarus., 274, 253, 10.1016/j.icarus.2016.02.052 Korycansky, 2004, Simulations of impact ejecta and regolith accumulation on asteroid Eros, Icarus., 171, 110, 10.1016/j.icarus.2004.03.021 Melosh, 1989 Murchie, 1991, Color heterogeneity of the surface of Phobos: relationships to geologic features and comparison to meteorite analogs, J. Geophys. Res. Solid Earth, 96, 5925, 10.1029/90JB02354 Murchie, 1999, Mars pathfinder spectral measurements of Phobos and Deimos: comparison with previous data, J. Geophys. Res. Planets., 104, 9069, 10.1029/98JE02248 Nayak, 2018, Sesquinary reimpacts dominate surface characteristics on Phobos, Icarus., 300, 145, 10.1016/j.icarus.2017.08.039 Nayak, 2016, Effects of mass transfer between Martian satellites on surface geology, Icarus., 267, 220, 10.1016/j.icarus.2015.12.026 Pajola, 2013, Phobos as a D-type captured asteroid, spectral modeling from 0.24 to 4.0 μm, Astrophys. J., 777, 1, 10.1088/0004-637X/777/2/127 Pajola, 2017, Refining the boundary between the Phobos blue/red spectral units with the ExoMars-CaSSIS imagery, Eur Planet. Sci. Congr., 11 Pajola, 2018, Phobos MRO/CRISM visible and near-infrared (0.5-2.5 μm) spectral modeling, Planet Space Sci., 154, 63, 10.1016/j.pss.2018.02.016 Patsyn, 2012, Spectrometric characteristics of the surface of Phobos from data obtained by HRSC on Mars express, Mod Probl Remote Earth Sens Space., 9, 312 Pieters, 2014, Composition of surface materials on the moons of Mars, Planet Space Sci., 102, 144, 10.1016/j.pss.2014.02.008 Ramsley, 2013, Mars impact ejecta in the regolith of Phobos: bulk concentration and distribution, Planet Space Sci., 87, 115, 10.1016/j.pss.2013.09.005 Ramsley, 2017, The Stickney crater ejecta secondary impact crater spike on Phobos: implications for the age of Stickney and the surface of Phobos, Planet Space Sci., 138, 7, 10.1016/j.pss.2017.02.004 Ramsley, 2019, Origin of Phobos grooves: testing the Stickney crater ejecta model, Planet Space Sci., 165, 137, 10.1016/j.pss.2018.11.004 Rein, 2012, REBOUND: an open-source multi-purpose N-body code for collisional dynamics, A. Astr., 537, A128, 10.1051/0004-6361/201118085 Scheeres, 2019, Dynamics in the Phobos environment, Adv. Space Res., 63, 476, 10.1016/j.asr.2018.10.016 Scheeres, 2002, The fate of asteroid ejecta, Asteroids III., 527, 10.2307/j.ctv1v7zdn4.40 Schmedemann, 2014, The age of Phobos and its largest crater, Stickney. Planet Space Sci., 102, 152, 10.1016/j.pss.2014.04.009 Shi, 2016, Mass wasting on Phobos triggered by an evolving tidal environment, Geophys. Res. Lett., 43, 12,371, 10.1002/2016GL071650 Shingareva, 2001, Mass-wasting processes on the surface of Phobos, Solar Syst. Res., 35, 431, 10.1023/A:1013082711274 Soter, 1971 Stöffler, 1975, Experimental hypervelocity impact into quartz sand: distribution and shock metamorphism of ejecta, J. Geophys. Res., 80, 4062, 10.1029/JB080i029p04062 Stooke, 2012, Stooke small bodies maps V2. 0. NASA planetary data, System, 183 Thomas, 1998, Ejecta emplacement on the Martian satellites, Icarus., 131, 78, 10.1006/icar.1997.5858 Thomas, 2000, Phobos: regolith and ejecta blocks investigated with Mars orbiter camera images, J. Geophys. Res-Planets., 105, 15091, 10.1029/1999JE001204 Thomas, 2011, Spectral heterogeneity on Phobos and Deimos: HiRISE observations and comparisons to Mars pathfinder results, Planet Space Sci., 59, 1281, 10.1016/j.pss.2010.04.018 Willner, 2014, Phobos' shape and topography models, Planet Space Sci., 102, 51, 10.1016/j.pss.2013.12.006 Witasse, 2014, Mars express investigations of Phobos and Deimos, Planet Space Sci., 102, 18, 10.1016/j.pss.2013.08.002