Simulating re-impacts from craters at the deepest location of Phobos to generate its blue spectral units
Tài liệu tham khảo
Asphaug, 1993, The Stickney impact of Phobos: a dynamical model, Icarus., 101, 144, 10.1006/icar.1993.1012
Ballouz, 2019, Surface refreshing of Martian moon Phobos by orbital eccentricity-driven grain motion, Nat. Geo., 12, 229, 10.1038/s41561-019-0323-9
Basilevsky, 2014, The surface geology and geomorphology of Phobos, Planet Space Sci., 102, 95, 10.1016/j.pss.2014.04.013
Basilevsky, 2015, Survival times of meter-sized rock boulders on the surface of airless bodies, Planet Space Sci., 117, 312, 10.1016/j.pss.2015.07.003
Burns, 1978, The dynamical evolution and origin of the Martian moons, Vistas Astron., 22, 193, 10.1016/0083-6656(78)90015-6
Dobrovolskis, 1980, Life near the Roche limit: behavior of ejecta from satellites close to planets, Icarus., 42, 422, 10.1016/0019-1035(80)90105-0
Durda, 2012, Detecting crater ejecta-blanket boundaries and constraining source crater regions for boulder tracks and elongated secondary craters on Eros, Meteo. Planet. Sci., 47, 1087, 10.1111/j.1945-5100.2012.01380.x
Ernst, 2018, The small body mapping tool (SBMT) for accessing, visualizing, and analyzing spacecraft data in three dimensions, Lunar Planet. Sci. Conf., 49
Fraeman, 2014, Spectral absorptions on Phobos and Deimos in the visible/near infrared wavelengths and their compositional constraints, Icarus., 229, 196, 10.1016/j.icarus.2013.11.021
Gaskell, 2011
Geissler, 1996, Erosion and Ejecta Reaccretion on 243 Ida and its moon, Icarus., 120, 140, 10.1006/icar.1996.0042
Hemmi, 2020, Morphology and Morphometry of sub-kilometer craters on the nearside of Phobos and implications for regolith properties, Trans. Japan Soc. Aero. Space Sci., 63, 1, 10.2322/tjsass.63.124
Housen, 1983, Crater ejecta scaling laws: fundamental forms based on dimensional analysis, J. Geophys. Res. Solid Earth, 88, 2485, 10.1029/JB088iB03p02485
Karachevtseva, 2014, The Phobos information system, Planet Space Sci., 102, 74, 10.1016/j.pss.2013.12.015
Kawakatsu, 2017, Mission concept of martian moons exploration (MMX)
Khan, 2018, A geophysical perspective on the bulk composition of Mars, J. Geophys. Res. Planets., 123, 575, 10.1002/2017JE005371
Konopliv, 2016, An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data, Icarus., 274, 253, 10.1016/j.icarus.2016.02.052
Korycansky, 2004, Simulations of impact ejecta and regolith accumulation on asteroid Eros, Icarus., 171, 110, 10.1016/j.icarus.2004.03.021
Melosh, 1989
Murchie, 1991, Color heterogeneity of the surface of Phobos: relationships to geologic features and comparison to meteorite analogs, J. Geophys. Res. Solid Earth, 96, 5925, 10.1029/90JB02354
Murchie, 1999, Mars pathfinder spectral measurements of Phobos and Deimos: comparison with previous data, J. Geophys. Res. Planets., 104, 9069, 10.1029/98JE02248
Nayak, 2018, Sesquinary reimpacts dominate surface characteristics on Phobos, Icarus., 300, 145, 10.1016/j.icarus.2017.08.039
Nayak, 2016, Effects of mass transfer between Martian satellites on surface geology, Icarus., 267, 220, 10.1016/j.icarus.2015.12.026
Pajola, 2013, Phobos as a D-type captured asteroid, spectral modeling from 0.24 to 4.0 μm, Astrophys. J., 777, 1, 10.1088/0004-637X/777/2/127
Pajola, 2017, Refining the boundary between the Phobos blue/red spectral units with the ExoMars-CaSSIS imagery, Eur Planet. Sci. Congr., 11
Pajola, 2018, Phobos MRO/CRISM visible and near-infrared (0.5-2.5 μm) spectral modeling, Planet Space Sci., 154, 63, 10.1016/j.pss.2018.02.016
Patsyn, 2012, Spectrometric characteristics of the surface of Phobos from data obtained by HRSC on Mars express, Mod Probl Remote Earth Sens Space., 9, 312
Pieters, 2014, Composition of surface materials on the moons of Mars, Planet Space Sci., 102, 144, 10.1016/j.pss.2014.02.008
Ramsley, 2013, Mars impact ejecta in the regolith of Phobos: bulk concentration and distribution, Planet Space Sci., 87, 115, 10.1016/j.pss.2013.09.005
Ramsley, 2017, The Stickney crater ejecta secondary impact crater spike on Phobos: implications for the age of Stickney and the surface of Phobos, Planet Space Sci., 138, 7, 10.1016/j.pss.2017.02.004
Ramsley, 2019, Origin of Phobos grooves: testing the Stickney crater ejecta model, Planet Space Sci., 165, 137, 10.1016/j.pss.2018.11.004
Rein, 2012, REBOUND: an open-source multi-purpose N-body code for collisional dynamics, A. Astr., 537, A128, 10.1051/0004-6361/201118085
Scheeres, 2019, Dynamics in the Phobos environment, Adv. Space Res., 63, 476, 10.1016/j.asr.2018.10.016
Scheeres, 2002, The fate of asteroid ejecta, Asteroids III., 527, 10.2307/j.ctv1v7zdn4.40
Schmedemann, 2014, The age of Phobos and its largest crater, Stickney. Planet Space Sci., 102, 152, 10.1016/j.pss.2014.04.009
Shi, 2016, Mass wasting on Phobos triggered by an evolving tidal environment, Geophys. Res. Lett., 43, 12,371, 10.1002/2016GL071650
Shingareva, 2001, Mass-wasting processes on the surface of Phobos, Solar Syst. Res., 35, 431, 10.1023/A:1013082711274
Soter, 1971
Stöffler, 1975, Experimental hypervelocity impact into quartz sand: distribution and shock metamorphism of ejecta, J. Geophys. Res., 80, 4062, 10.1029/JB080i029p04062
Stooke, 2012, Stooke small bodies maps V2. 0. NASA planetary data, System, 183
Thomas, 1998, Ejecta emplacement on the Martian satellites, Icarus., 131, 78, 10.1006/icar.1997.5858
Thomas, 2000, Phobos: regolith and ejecta blocks investigated with Mars orbiter camera images, J. Geophys. Res-Planets., 105, 15091, 10.1029/1999JE001204
Thomas, 2011, Spectral heterogeneity on Phobos and Deimos: HiRISE observations and comparisons to Mars pathfinder results, Planet Space Sci., 59, 1281, 10.1016/j.pss.2010.04.018
Willner, 2014, Phobos' shape and topography models, Planet Space Sci., 102, 51, 10.1016/j.pss.2013.12.006
Witasse, 2014, Mars express investigations of Phobos and Deimos, Planet Space Sci., 102, 18, 10.1016/j.pss.2013.08.002