Simulating changes in soil carbon stocks for Quercus forests and upland rice fields under climate change scenarios in Manipur (India)

Gaurav Mishra1, Menaka Takhelmayum1, Animesh Sarkar1, Aria Soleimani2, Rosa Francaviglia3
1Rain Forest Research Institute, Jorhat, Assam, India
2Faculty of Natural Resources & Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, 46417-76489, Iran
3CREA, Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, 00184 Rome, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anonymous (2009). Baseline survey of minority concentrated districts. District Report SENAPATI. Study Commissioned by Ministry of Minority Affairs Government of India, pp. 41

Athokpam H, Wani SH, Kamei D, Athokpam HS, Nongmaithem J, Kumar D, Singh JK, Naorem BS, Devi TR, Devi L (2013) Soil macro-and micro-nutrient status of Senapati district, Manipur (India). Afr J Agric Res 8(39):4932–4936. https://doi.org/10.5897/AJAR2012.2151

Barah BC, Pandey S (2005) Rainfed rice production systems in Eastern India: an on-farm diagnosis and policy alternatives. Indian J Agric Econ 60(1):110–136

Blake GR, & Hartge KH (1986). Bulk density. In A. Klute (Ed.), Methods of Soil Analysis Part 1, Physical and Mineralogical Methods (pp. 951–984). SSSA Book Series No.5, 2nd edn. SSSA and ASA, Madison, Wisconsin

Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449. https://doi.org/10.1126/science.1155121

Cerri CEP, Easter M, Paustian K, Killian K, Coleman K, Bernoux M, Falloon P, Powlson DS, Batjes N, Milne E, Cerri CC (2007) Simulating SOC changes in 11 land use change chronosequences from the Brazilian Amazon with RothC and century models. Agric Ecosyst Environ 122:46–57. https://doi.org/10.1016/j.agee.2007.01.007

Champion HG, Seth SK (1968) A revised survey of forest types of India. Government. of India Press, New Delhi, p 404

Chatterjee SP (1965). Physiography. The Gazetteer of India, Ministry of Information and Broadcasting, Government of India, Delhi, Vol 1

Chenu C, Angers DA, Barré P, Derrien D, Arrouays D, Balesdent J (2018) Increasing organic stocks in agricultural soils: knowledge gaps and potential innovations. Soil Tillage Res 188:41–52. https://doi.org/10.1016/j.still.2018.04.011

Coleman K, Jenkinson DS (1996) RothC-26.3—a model for the turnover of carbon in soil. In Powlson DS, Smith P, Smith JU (Eds). Evaluation of Soil Organic Matter Models (pp. 237–246). NATO ASI Series (Series I: Global Environmental Change), vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61094-3_17

Coleman K, Jenkinson DS (2014) RothC — a model for the turnover of carbon in soil: model description and users guide (updated June 2014). Lawes Agricultural Trust, Harpenden https://www.rothamsted.ac.uk/sites/default/files/RothC_guide_WIN.pdf. Accessed 18 September 2020

Coleman K, Jenkinson DS, Crocker GJ, Grace PR, Klir J, Korschens M, Poulton PR, Richter DD (1997) Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma 81:29–44. https://doi.org/10.1016/S0016-7061(97)00079-7

Devi TP, Durai AA, Singh TA, Gupta S, Mitra J, Pattanayak A, Sarma B, Das A (2008) Preliminary studies on physical and nutritional qualities of some indigenous and important rice cultivars of northeastern hill region of India. J Food Qual 31:686–700. https://doi.org/10.1111/J.1745-4557.2008.00228.X

Falloon P, Smith P, Coleman K, Marshall S (1998) Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model. Soil Biol Biochem 30:1207–1211. https://doi.org/10.1016/S0038-0717(97)00256-3

Francaviglia R, Coleman K, Whitmore AP, Doro L, Urracci G, Rubino M, Ledda L (2012) Changes in soil organic carbon and climate change — application of the RothC model in agro-silvo-pastoral Mediterranean systems. Agric Syst 112:48–54. https://doi.org/10.1016/j.agsy2007.07.001

Francaviglia R, Soleimani A, Massah Bavani AR, Hosseini SM, Jafari M (2019) Probability assessment of climate change impacts on soil organic carbon stocks in future periods: a case study in Hyrcanian forests (Northern Iran). Eur J For Res 139(1):1–16. https://doi.org/10.1007/s10342-019-01228-9

Gee, G.W., & Bauder, J.W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of Soil Analysis Part 1, Physical and Mineralogical Methods (pp. 383–411). SSSA Book Series No.5, 2nd edn. SSSA and ASA, Madison, Wisconsin

Gilhespy SL, Anthony S, Cardenas L, Chadwick D, Prado AD, Li CS, Misselbrook T, Rees RM, Salas W, Sanz-Cobena A, Smith P, Tilston EL, Topp CFE, Vetter S, Yeluripati JB (2014) First 20 years of DNDC (DeNitrification-DeComposition): model evolution. Ecol Model 292:51–62. https://doi.org/10.1016/j.ecolmodel.2014.09.004

Gorissen A, Tietema A, Joosten NN, Estiarte M, Peñuelas J, Sowerby A, Emmett BA, Beier C (2004) Climate change affects carbon allocation to the soil in shrublands. Ecosystems 7:650–661. https://doi.org/10.1007/s10021-004-0218-4

Gottschalk P, Smith JU, Wattenbach M, Bellarby J, Stehfest E, Arnell N, Osborn TJ, Jones C, Smith P (2012) How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios. Biogeosciences 9:3151–3171. https://doi.org/10.5194/bg-9-3151-2012

IPCC (2007). Climate change 2007: impacts, Adaptation and Vulnerability. Cambridge University Press, Cambridge, UK, 976 pp.

IPCC (2014) Climate change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, p 151

Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436. https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

Kaonga ML, Coleman K (2008) Modelling soil organic carbon turnover in improved fallows in eastern Zambia using the RothC-26.3 model. For Ecol Manag 256:1160–1166. https://doi.org/10.1016/j.foreco.2008.06.017

Kooch Y, Hosseini SM, Zaccone C, Jalilvand H, Hojjati SM (2012) Soil organic carbon sequestration as affected by afforestation: the Darab Kola forest (north of Iran) case study. J Environ Monit 14:2438–2446. https://doi.org/10.1039/C2EM30410D

Lal R (2008) Carbon sequestration. Philos Trans R Soc B: Biol Sci 363(1492):815–830. https://doi.org/10.1098/rstb.2007.2185

Li C, Frolking S, Harriss R (1994) Modeling carbon biogeochemistry in agricultural soils. Glob Biogeochem Cycles 8:237–254. https://doi.org/10.1029/94GB00767

Lozano-García B, Muñoz-Rojas M, Parras-Alcántara L (2017) Climate and land use changes effects on soil organic carbon stocks in a Mediterranean semi-natural area. Sci Total Environ 579:1249–1259. https://doi.org/10.1016/j.scitotenv.2016.11.111

Mao R, Zeng DH, Ai GY, Yang D, Li LJ, Liu YX (2010) Soil microbiological and chemical effects of a nitrogen-fixing shrub in poplar plantations in semi-arid region of Northeast China. Eur J Soil Biol 46:325–329. https://doi.org/10.1016/j.ejsobi.2010.05.005

MEA (2005). Ecosystems and human well-being: synthesis. Millennium Ecosystem Assessment. Island Press, Washington, 137 pp.

Mishra G, Jangir A, Francaviglia R (2019) Modeling soil organic carbon dynamics under shifting cultivation and forests using RothC model. Ecol Model 396:33–41. https://doi.org/10.1016/j.ecolmodel.2019.01.016

Mishra G, Giri K, Jangir A, Francaviglia R (2020) Projected trends of soil organic carbon stocks in Meghalaya state of Northeast Himalayas, India. Implications for a policy perspective. Sci Total Environ 698:134266. https://doi.org/10.1016/j.scitotenv.2019.134266

Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

Mosier AR (1998) Soil processes and global change. Biol Fertil Soils 27:221–229. https://doi.org/10.1007/s003740050424

Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models: part 1. A discussion of principles. J Hydrol 10(3):282–290. https://doi.org/10.1016/0022-1694(70)90255-6

Nishimura S, Yonemura S, Sawamoto T, Shirato Y, Akiyama H, Sudo S, Yagi K (2008) Effect of land use change from paddy rice cultivation to upland crop cultivation on soil carbon budget of a cropland in Japan. Agric Ecosyst Environ 125(1–4):9–20. https://doi.org/10.1016/j.agee.2007.11.003

Palosuo T, Foereid B, Svensson M, Shurpali N, Lehtonen A, Herbst M, Linkosalo T, Ortiz C, Todorovic GR, Marcinkonis S (2012) A multi-model comparison of soil carbon assessment of a coniferous forest stand. Environ Model Softw 35:38–49. https://doi.org/10.1016/j.envsoft.2012.02.004

Parton WJ, Schimel DS, Cole C, Ojima D (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 51(5):1173–1179. https://doi.org/10.2136/sssaj1987.03615995005100050015x

Paul KI, Polglase PJ, Richards GP (2003) Predicted change in soil carbon following afforestation or reforestation, and analysis of controlling factors by linking a C accounting model (CAMFor) to models of forest growth (3PG), litter decomposition (GENDEC) and soil C turnover (RothC). For Ecol Manag 177:485–501. https://doi.org/10.1016/S0378-1127(02)00454-1

Racsko P, Szeidl L, Semenov M (1991) A serial approach to local stochastic weather models. Ecol Model 57:27–41. https://doi.org/10.1016/0304-3800(91)90053-4

Rajashekara G, Fararoda R, Reddy RS, Jha CS, Ganeshaiah KN, Singh JS, Dadhwal VK (2018) Spatial distribution of forest biomass carbon (above and below ground) in Indian forests. Ecol Indic 85:742–752. https://doi.org/10.1016/j.ecolind.2017.11.024

Ramakrishnan, P.S. (1992). Shifting agriculture and sustainable development. An interdisciplinary study from North-Eastern India. Man and the Biosphere Series, vol. 10, UNESCO, Paris

Roy SS, Ansari MA, Sharma SK, Sailo B, Devi CB, Singh IM, Das A, Chakraborty D, Arunachalam A, Prakash N, Ngachan SV (2018) Climate resilient agriculture in Manipur: status and strategies for sustainable development. Curr Sci 115(7):1342–1350. https://doi.org/10.18520/cs/v115/i7/1342-1350

Semenov MA, Brooks RJ, Barrow EM, Richardson CW (1998) Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Clim Res 10:95–107. https://doi.org/10.3354/cr010095

Shirato Y, Yagasaki Y, Nishida M (2011) Using different versions of the Rothamsted carbon model to simulate soil carbon in long-term experimental plots subjected to paddy–upland rotation in Japan. Soil Sci Plant Nutr 57(4):597–606. https://doi.org/10.1080/00380768.2011.591284

Singh VP, & Singh RK (2000). Rainfed Rice: a sourcebook of best practices and strategies in eastern India. Int Rice Res Instit, 292 pp.

Singh IM, Punitha P, Ansari MA, Roy SS, Sharma SK, Prakash N (2017) Status of shifting cultivation in Manipur: an overview. In: Prakash N, Roy SS, Ansari MA, Sharma SK, Punitha P, Sailo B, Singh IM (eds) Jhum improvement for sustaining farm livelihood and natural resource conservation in North Eastern Hill region. Vistas And Frontiers. ICAR Research Complex for NEH Region, Meghalaya, 110 pp

Singha K, & Mishra S (2015). Sustainability of rice cultivation: a study of Manipur. Rice Research, 4(1). https://doi.org/10.4172/2375-4338.1000159

Smith J, Smith P (2007) Introduction to environmental modelling. Oxford University Press, New York, 180 pp

Soleimani A, Hosseini SM, Massah Bavani AR, Jafari M, Francaviglia R (2017) Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran). Sci Total Environ 599:1646–1657. https://doi.org/10.1016/j.scitotenv.2017.05.077

Van Vuuren DP, Kok MTJ, Girod B, Lucas PL, de Vries B (2012) Scenarios in global environmental assessments: key characteristics and lessons for future use. Glob Environ Chang 22:884–895. https://doi.org/10.1016/j.gloenvcha.2012.06.001

Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

Wei W, Chen D, Wang L, Daryanto S, Chen L, Yu Y, Lu Y, Sun G, Feng T (2016) Global synthesis of the classifications, distributions, benefits and issues of terracing. Earth Sci Rev 159(18):388–403. https://doi.org/10.1016/j.earscirev.2016.06.010

Wen D, He NP (2016) Forest carbon storage along the north-south transect of eastern China: spatial patterns, allocation, and influencing factors. Ecol Indic 61:960–967. https://doi.org/10.1016/j.ecolind.2015.10.054

Wilcove DS, Koh LP (2010) Addressing the threats to biodiversity from oil-palm agriculture. Biodivers Conserv 19:999–1007. https://doi.org/10.1007/s10531-009-9760-x

Yadava PS, Singh EJ (1988) Some aspects of ecology of oak forests in Shiroy hills Manipur (North eastern India). Int J Ecol Environ Sci 14:103–113

Zhang L, Zheng Q, Liu Y, Liu S, Yu D, Shi X, Xing S, Chen H, Fan X (2019) Combined effects of temperature and precipitation on soil organic carbon changes in the uplands of eastern China. Geoderma 337:1105–1115. https://doi.org/10.1016/j.geoderma.2018.11.026

Zhao J, Ma J, Hou M, Li S (2019) Spatial–temporal variations of carbon storage of the global forest ecosystem under future climate change. Mitig Adapt Strateg Glob Chang 25(4):603–624. https://doi.org/10.1007/s11027-019-09882-5

Ziegler AD, Fox JM, Xu J (2009) The rubber juggernaut. Science 324:1024–1025. https://doi.org/10.1126/science.1173833