Simplifying ADRC design with error-based framework: case study of a DC–DC buck power converter
Tóm tắt
Từ khóa
Tài liệu tham khảo
Nizami, T. K., Chakravarty, A., & Mahanta, C. (2021). Time bound online uncertainty estimation based adaptive control design for DC-DC buck converters with experimental validation. IFAC Journal of Systems and Control, 15, 100127. https://doi.org/10.1016/j.ifacsc.2020.1001275.
Han, J. (2009). From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906. https://doi.org/10.1109/TIE.2008.2011621.
Gao, Z. (2014). On the centrality of disturbance rejection in automatic control. ISA Transactions, 53(4), 850–857. https://doi.org/10.1016/j.isatra.2013.09.012.
Chen, W. H., Yang, J., Guo, L., & Li, S. (2016). Disturbance-observer-based control and related methods – an overview. IEEE Transactions on Industrial Electronics, 63(2), 1083–1095. https://doi.org/10.1109/TIE.2015.2478397.
Madonski, R., & Herman, P. (2015). Survey on methods of increasing the efficiency of extended state disturbance observers. ISA Transactions, 56, 18–27. https://doi.org/10.1016/j.isatra.2014.11.0081.
Radke, A., & Gao, Z. (2006). A survey of state and disturbance observers for practitioners. In Proceedings of the American Control Conference (pp. 5183–5188). Minneapolis, MN, USA. https://doi.org/10.1109/ACC.2006.1657545.
Sariyildiz, E., Oboe, R., & Ohnishi, K. (2020). Disturbance observer-based robust control and its applications: 35th anniversary overview. IEEE Transactions on Industrial Electronics, 67(3), 2042–2053. https://doi.org/10.1109/TIE.2019.2903752.
Zheng, Q., & Gao, Z. (2018). Active disturbance rejection control: some recent experimental and industrial case studies. Control Theory and Technology, 16(4), 301–313. https://doi.org/10.1007/s11768-018-8142-x.
Aguilar-Ibanez, C., Sira-Ramirez, H., & Acosta, J. A. (2017). Stability of active disturbance rejection control for uncertain systems: a Lyapunov perspective. International Journal of Robust and Nonlinear Control, 27(18), 4541–4553. https://doi.org/10.1002/rnc.3812.
Nowicki, M., Madonski, R., & Kozlowski, K. (2015). First look at conditions on applicability of ADRC. In International Workshop on Robot Motion and Control (pp. 294–299). Poznan, Poland. https://doi.org/10.1109/RoMoCo.2015.7219750.
Shao, S., & Gao, Z. (2017). On the conditions of exponential stability in active disturbance rejection control based on singular perturbation analysis. International Journal of Control, 90(10), 2085–2097. https://doi.org/10.1080/00207179.2016.1236217.
Wu, Z. H., Zhou, H. C., Guo, B. Z., & Deng, F. (2020). Review and new theoretical perspectives on active disturbance rejection control for uncertain finite-dimensional and infinite-dimensional systems. Nonlinear Dynamics, 101(2), 935–959. https://doi.org/10.1007/s11071-020-05845-7.
Xue, W., & Huang, Y. (2015). Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems. ISA Transactions, 58, 133–154. https://doi.org/10.1016/j.isatra.2015.05.001.
Xue, W., & Huang, Y. (2018). Performance analysis of 2-DOF tracking control for a class of nonlinear uncertain systems with discontinuous disturbances. International Journal of Robust Nonlinear Control, 28, 1456–1473. https://doi.org/10.1002/rnc.3972.
Sira-Ramirez, H., Luviano-Juarez, A., & Cortes-Romero, J. (2013). Robust input-output sliding mode control of the buck converter. Control Engineering Practice, 21(5), 671–678. https://doi.org/10.1016/j.conengprac.2012.03.008.
Wang, J., Li, S., Yang, J., Wu, B., & Li, Q. (2015). Extended state observer-based sliding mode control for PWM-based DC-DC buck power converter systems with mismatched disturbances. IET Control Theory Applications, 9(4), 579–586. https://doi.org/10.1049/iet-cta.2014.0220.
Wang, J., Li, S., Yang, J., Wu, B., & Li, Q. (2016). Finite-time disturbance observer based non-singular terminal sliding-mode control for pulse width modulation based DC-DC buck converters with mismatched load disturbances. IET Power Electronics, 9(9), 1995–2002. https://doi.org/10.1049/iet-pel.2015.0178.
Yang, J., Cui, H., Li, S., & Zolotas, A. (2017). Optimized active disturbance rejection control for DC-DC buck converters with uncertainties using a reduced-order GPI observer. IEEE Transactions on Circuits and Systems, 65(2), 832–841. https://doi.org/10.1109/TCSI.2017.2725386.
Michalek, M. M. (2016). Robust trajectory following without availability of the reference time-derivatives in the control scheme with active disturbance rejection. In Proceedings of the American Control Conference (pp. 1536–1541). Boston, MA, USA. https://doi.org/10.1109/ACC.2016.7525134.
Zhang, H. (2017). Information Driven Control Design: A Case for PMSM Control. Ph.D. thesis. Cleveland: Cleveland State University.
Madonski, R., Stankovic, M., Ferdjali, A., Shao, S., & Gao, Z. (2020). General ADRC design for systems with periodic disturbances of unknown and varying frequencies. Journal of Dynamic Systems, Measurement, and Control, 143(1), 011006. https://doi.org/10.1115/1.4048353.
Madoński, R., Stankovic, M., Shao, S., Gao, Z., Yang, J., & Li, S. (2020). Active disturbance rejection control of torsional plant with unknown frequency harmonic disturbance. Control Engineering Practice, 100, 104413. https://doi.org/10.1016/j.conengprac.2020.104413.
Chen, S., Chen, Z., & Zhao, Z. (2020). An error-based active disturbance rejection control with memory structure. Measurement and Control. https://doi.org/10.1177/0020294020915219.
Ramírez-Neria, M., Madonski, R., Luviano-Jurez, A., Gao, Z., & Sira-Ramírez, H. (2020). Design of ADRC for second-order mechanical systems without time-derivatives in the tracking controller. In Proceedings of the American Control Conference (pp. 2623–2628). Denver, CO, USA. https://doi.org/10.23919/ACC45564.2020.9147338.
Łakomy, K., & Madonski, R. (2020). Cascade extended state observer for active disturbance rejection control applications under measurement noise. ISA Transactions. https://doi.org/10.1016/j.isatra.2020.09.007.
Łakomy, K., Madonski, R., Dai, B., Yang, J., Kicki, P., Ansari, M., et al. (2021). Active disturbance rejection control with sensor noise suppressing observer for DC-DC buck power converters. IEEE Transactions on Industrial Electronics,. https://doi.org/10.1109/TIE.2021.3055187.
Ramírez-Neria, M., Madonski, R., Shao, S., & Gao, Z. (2020). Robust tracking in underactuated systems using flatness-based ADRC with cascade observers. Journal of Dynamic Systems, Measurement, and Control, 142(9), 091002. https://doi.org/10.1115/1.4046799.
Łakomy, K., Patelski, R., & Pazderski, D. (2020). ESO architectures in the trajectory tracking ADR controller for a mechanical system: a comparison. A. Bartoszewicz, J. Kabziński, & J. Kacprzyk (Eds.), Advanced, Contemporary Control. (pp. 1323–1335) Cham: Springer. https://doi.org/10.1007/978-3-030-50936-1_110.
Łakomy, K., & Michaek, M. (2020). Robust output-feedback VFO-ADR control of underactuated spatial vehicles in the task of following non-parametrized paths. European Journal of Control. https://doi.org/10.1016/j.ejcon.2020.07.006.
Lechekhab, T. E., Manojlovic, S., Stankovic, M., Madonski, R., & Simic, S. (2020). Robust error-based active disturbance rejection control of a quadrotor. Aircraft Engineering and Aerospace Technology. https://doi.org/10.1108/AEAT-12-2019-0266.
Madonski, R., Łakomy, K., & Yang, J. (2020). Comparative study of output-based and error-based ADRC schemes in application to buck converter-fed DC motor system. In IEEE Conference on Decision and Control (pp. 2744–2749). Jeju Island, South Korea. https://doi.org/10.1109/CDC42340.2020.9304198.
Madonski, R., Shao, S., Zhang, H., Gao, Z., Yang, J., & Li, S. (2019). General error-based active disturbance rejection control for swift industrial implementations. Control Engineering Practice, 84, 218–229. https://doi.org/10.1016/j.conengprac.2018.11.021.
Madonski, R., Gao, Z., & Lakomy, K. (2015). Towards a turnkey solution of industrial control under the active disturbance rejection paradigm. In Conference of the Society of Instrument and Control Engineers of Japan (pp. 616–621). Hangzhou, China. https://doi.org/10.1109/SICE.2015.7285478.
Xue, W., Huang, Y., & Yang, X. (2010). What kinds of system can be used as tracking-differentiator. In Proceedings of the Chinese Control Conference (pp. 6113–6120). Beijing, China.
Gao, Z. (2003). Scaling and bandwidth-parameterization based controller tuning. In Proceedings of the American Control Conference (pp. 4989–4996). Denver, CO, USA. https://doi.org/10.1109/ACC.2003.1242516.
Sira-Ramirez, H., & Silva-Ortigoza, R. (2006). Control Design Techniques in Power Electronics Devices. London: Springer.
Kokotovic, P., Khalil, H. K., & O’Reilly, J. (1999). Singular Perturbation Methods in Control: Analysis and Design. Philadelphia: SIAM. https://doi.org/10.1137/1.9781611971118.
Sira-Ramirez, H., Linares-Flores, J., Garcia-Rodriguez, C., & Contreras-Ordaz, M. A. (2014). On the control of the permanent magnet synchronous motor: an active disturbance rejection control approach. IEEE Transactions on Control Systems Technology, 22(5), 2056–2063. https://doi.org/10.1109/TCST.2014.2298238.