Simple synthesis, structural and optical properties of cobalt ferrite nanoparticles

The European Physical Journal Plus - Tập 134 - Trang 1-10 - 2019
A. V. Ravindra1,2,3, M. Chandrika4, Ch. Rajesh4,5, Pratap Kollu6, Shaohua Ju1,2,3, S. D. Ramarao4
1State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, China
2Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, China
3Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China
4Advanced Functional Materials Research Centre, Department of Physics, Koneru Lakshmiah Education Foundation, Vaddeswaram, Guntur, India
5Department of Physics, GVP College of Engineering (A), Madhurwada, Visakhapatnam, India
6Centre for Advanced Studies in Electronics Science and Technology (CASEST), School of Physics, University of Hyderabad, Gachibowli, Hyderabad, India

Tóm tắt

Cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by simple and economic co-precipitation method at 90 °C for 2h using a biodegradable surfactant (starch), and by annealing at 500 °C for 1, 2, and 6h. The XRD patterns reveal spinel CoFe2O4 phase for as-synthesized and annealed samples without any impurity phase. FTIR spectra also demonstrate the characteristic absorption bands of CoFe2O4 phase and starch surfactant. SEM images display nearly spherical morphology for all the samples and the average particle size increases when annealed at 500 °C and for prolonged durations at the same temperature. The direct band gap of CoFe2O4 nanoparticles decreases with increasing particle size and the direct band gap values are attributed to spin-allowed d to d on-site transitions. The PL spectra exhibit peaks associated with transitions of charge carriers to near edge, surface, and defect states. The PLE peaks suffer blue shift when annealed at 500 °C for 1h and then red shift on further prolonging the annealing time to 2 and 6h at the same temperature. Such results offer new opportunities for optimizing and enhancing the performance of cobalt ferrite where the optical properties are decisive.

Tài liệu tham khảo

Q. Zhao, Z. Yan, C. Chen, J. Chen, Chem. Rev. 117, 10121 (2017) S. Jauhar, J. Kaur, A. Goyal, S. Singhal, RSC Adv. 6, 97694 (2016) O. Vozniuk, T. Tabanelli, N. Tanchoux, J.-M.M. Millet, S. Albonetti, F. Di Renzo, F. Cavani, Catalysts 8, 332 (2018) S.D. Raut, V.V. Awasarmol, B.G. Ghule, S.F. Shaikh, S.K. Gore, R.P. Sharma, P.P. Pawara, R.S. Mane, Mater. Res. Express 5, 065035 (2018) K.L. Routray, B. Sahoo, D. Behera, Mater. Res. Express 5, 085016 (2018) K. Benzid, D. Muller, P. Turek, J. Tribollet, Eur. Phys. J. B 88, 58 (2015) M.M. Ismail, S.N. Rafeeq, J.M.A. Sulaiman, A. Mandal, Appl. Phys. A 124, 380 (2018) A.K. Giri, E.M. Kirkpatrick, P. Moongkhamklang, S.A. Majetich, Appl. Phys. Lett. 80, 2341 (2002) S. Boumaza, A. Boudjemaa, A. Bouguelia, R. Bouarab, M. Trari, Appl. Energy 87, 2230 (2010) Y.S. Srinivasan, K.M. Paknikar, D. Bodas, V. Gajbhiye, Nanomedicine 10, 1221 (2018) S. Amiri, H. Shokrollahi, Mater. Sci. Eng. C 33, 1 (2013) A.V. Ramos, T.S. Santos, G.X. Miao, M.-J. Guittet, J.-B. Moussy, J.S. Moodera, Phys. Rev. B 78, 180402(R) (2008) V. Thakare, G. Xing, H. Peng, A. Rana, O. Game, P.A. Kumar, A. Banpurkar, Y. Kolekar, K. Ghosh, T. Wu, D.D. Sarma, S.B. Ogale, Appl. Phys. Lett. 100, 172412 (2012) R.V. Chopdekar, Y. Suzuki, Appl. Phys. Lett. 89, 182506 (2006) G.A. Sawatzky, F. Van Der Woude, A.H. Morrish, Phys. Rev. 187, 747 (1969) T.A.S. Ferreira, J.C. Waerenborgh, M.H.R.M. Mendonc, M.R. Nunes, F.M. Costa, Solid State Sci. 5, 383 (2003) Y. Zhang, Z. Yang, D. Yin, Y. Liu, C. Fei, R. Xiong, J. Shia, G. Yan, J. Magn. & Magn. Mater. 322, 3470 (2010) K. Maaz, A. Mumtaz, S.K. Hasanain, A. Ceylan, J. Magn. & Magn. Mater. 308, 289 (2007) T. Tatarchuk, M. Bououdina, J.J. Vijaya, L. John Kennedy, Springer Proc. Phys. 195, 305 (2017) B. Purnama, A.T. Wijayanta, Suharyana, J. King Saud Univ. - Sci. (2018) https://doi.org/10.1016/j.jksus.2018.07.019 T.E. Alves, H.V. Pessoni, A. Franco Junior, Phys. Chem. Chem. Phys. 19, 16395 (2017) V. Mameli, A. Musinu, A. Ardu, G. Ennas, D. Peddis, D. Niznansky, C. Sangregorio, C. Innocenti, N.T.K. Thanh, C. Cannas, Nanoscale 8, 10124 (2016) A. Abu El-Fadl, A.M. Hassan, M.H. Mahmoud, T. Tatarchuk, I.P. Yaremiy, A.M. Gismelssed, M.A. Ahmed, J. Magn. & Magn. Mater. 471, 192 (2019) M.A. Ahmed, H.E. Hassan, M.M. Eltabey, K. Latka, T.R. Tatarchuk, Physica B: Phys. Condens Matter. 530, 195 (2018) Z. Szotek, W.M. Temmerman, D. Ködderitzsch, A. Svane, L. Petit, H. Winter, Phys. Rev. B 74, 174431 (2006) Y.H. Hou, Y.J. Zhao, Z.W. Liu, H.Y. Yu, X.C. Zhong, W.Q. Qiu, D.C. Zeng, L.S. Wen, J. Phys. D: Appl. Phys. 43, 445003 (2010) V.N. Antonov, B.N. Harmon, A.N. Yaresko, Phys. Rev. B 67, 024417 (2003) Y. Tanabe, S. Sugano, I. J. Phys. Soc. Jpn. 9, 753 (1954) A.V. Ravindra, P. Padhan, W. Prellier, Appl. Phys. Lett. 101, 161902 (2012) B.S. Holinsworth, D. Mazumdar, H. Sims, Q.-C. Sun, M.K. Yurtisigi, S.K. Sarker, A. Gupta, W.H. Butler, J.L. Musfeldt, Appl. Phys. Lett. 103, 082406 (2013) C. Himcinschi, I. Vrejoiu, G. Salvan, M. Fronk, A. Talkenberger, D.R.T. Zahn, D. Rafaja, J. Kortus, J. Appl. Phys. 113, 084101 (2013) M. Kazemi, M. Ghobadi, A. Mirzaie, Nanotechnol. Rev. 7, 43 (2018) A.C. Larson, R.B. von Dreele, General Structural Analysis System (GSAS), Los Alamos National Laboratories, Los Alamos, NM, 1990 B.H. Toby, J. Appl. Crystallogr. 34, 210 (2001) J. Kazimierczak, D. Ciechańska, D. Wawro, K. Guzińska, Fibres Text. East. Eur. 15, 100 (2007) B.R. Babu, T. Tatarchuk, Mater. Chem. Phys. 207, 534 (2018) T.R. Tatarchuk, M. Bououdina, N.D. Paliychuk, I.P. Yaremiy, V.V. Moklyak, J. Alloys. Compd. 694, 777 (2017) J.L.M. De Vidales, A.L. Delgado, E. Vila, F.A. López, J. Alloys Compd. 287, 276 (1999) F.A. Lopez, D.A. Lopez, V.J.L. Martin de, E. Vila, J. Alloys. Compd. 265, 291 (1998) T.R. Tatarchuk, N.D. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, J. Alloys. Compd. 731, 1256 (2018) B. Purnama, R. Rahmawati, A.T. Wijayanta, Suharyana, J. Magn. 20, 207 (2015) D.M. Kasote, M.D. Oak, S.S. Nilegaonkar, V.V. Agte, Int. Food Res. J. 25, 1 (2018) issue No. 1 P. Mani, S. Suresh, Rasayan J. Chem. 2, 340 (2009) K. Fukushima, Y. Kimura, Polym. Int. 55, 626 (2006) K.J. Kim, H.S. Lee, M.H. Lee, S.H. Le, J. Appl. Phys. 91, 9974 (2002) R.V. Pisarev, A.S. Moskvin, A.M. Kalashnikova, Th. Rasing, Phys. Rev. B 79, 235128 (2009) A.V. Ravindra, B.C. Behera, P. Padhan, J. Nanosci. Nanotechnol. 14, 5591 (2014) A.P. Alivisatos, Science 271, 933 (1996) R.C. Rai, S. Wilser, M. Guminiak, B. Cai, M.L. Nakarmi, Appl. Phys. A 106, 207 (2012) M.F.-Garcia, J.A. Rodriguez, Metal Oxide Nanoparticles, in Encyclopedia of Inorganic Chemistry (John Wiley & Sons, Ltd. New York, USA, 2011) pp. 1--3 V.G. Andreeva, S.B. Menshovaa, A.Y. Kirinaa, S.B. Bibikovb, M.V. Prokofevc, V.M. Prokhorovd, Nanotechnol. Russ. 11, 9 (2016) D.E. Skinner, D.P. Colombo, J.J. Cavaleri, R.M. Bowman, J. Phys. Chem. 99, 7853 (1995) A. Sengupta, B. Jiang, K. Mandal, J. Zhang, J. Phys. Chem. B 103, 3128 (1999) U. Resch, A. Eychmuller, M. Hasse, H. Wellner, Langmuir 8, 2215 (1992) L. Kumar, M. Kar, IEEE Trans. Magn. 47, 3645 (2011) A. Manikandan, J.J. Vijaya, L.J. Kennedy, M. Bououdina, J. Mol. Struct. 1035, 332 (2013) D. Shi, M.E. Sadat, A.W. Dunn, D.B. Mast, Nanoscale 7, 8209 (2015)