Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Cảm biến điện hóa đơn giản và siêu nhạy để phát hiện axit oxalic trong các mẫu thực tế bằng chiến lược đồng điện phân một bước
Tóm tắt
Axit oxalic (OA), có mặt tự nhiên trong rau và các sản phẩm thực phẩm từ chúng, dễ dàng kết hợp với canxi và sắt để tạo thành các oxalat không tan. Sự chelation của chúng có thể dẫn đến nhiều bệnh thận; do đó, việc xác định chính xác OA rất quan trọng trong việc đánh giá chất lượng thực phẩm và các cài đặt chăm sóc sức khỏe. Tại đây, chúng tôi đã phát triển một phương pháp sol-gel không chứa cồn được kích thích bằng điện hóa để thu được các hạt nano platinum (PtNPs) bám dính với silica xốp trên điện cực carbon thủy tinh (PSiO2-PtNPs/GCE) thông qua quá trình một bước, có thể được sử dụng như một chất xúc tác tuyệt vời cho việc oxi hóa điện hóa OA lần đầu tiên. Không cần bất kỳ chất trung gian redox nào, PSiO2-PtNPs/GCE thể hiện điện thế oxi hóa thấp và tín hiệu dòng điện cao đáng kể, đạt được phạm vi nồng độ tuyến tính rộng từ 0 đến 45 μM và giới hạn phát hiện thấp tới 25 nM cho việc phát hiện OA. Hơn nữa, phương pháp sol-gel không chứa cồn hiện tại dành cho việc xác định OA đã được xác minh trong các mẫu thực tế, hứa hẹn cho phân tích thực phẩm và chẩn đoán lâm sàng.
Từ khóa
Tài liệu tham khảo
Ivandini TA, Rao TN, Fujishima A, Einaga Y. Electrochemical oxidation of oxalic acid at highly boron-doped diamond electrodes. Anal Chem. 2006;78:3467–71.
Shang L, Zhao F, Zeng B. Electrodeposition of PdAu alloy nanoparticles on ionic liquid functionalized graphene film for the voltammetric determination of oxalic acid. Electroanal. 2013;25:453–9.
Oxalic acid content of selected vegetables. Available from: http://www.ars.usda.gov/Services/ docs.htm?docid=9444.
Committee For Veterinary Medicinal Products (2003) Oxalic acid-summary report, EMEA, EMEA/MRL/891/03, [online] http://www.emea.eu.int/pdfs/vet/mrls/089103en.pdf ().
Herrmann JM, Mozzanega MN, Pichat PJ. Oxidation of oxalic acid in aqueous suspensions of semiconductors illuminated with UV or visible light. Photochem. 1983;22:333–43.
Li Y, Lu G, Li S. Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2. Appl Catal A. 2001;214:179–85.
Maiyalagan T, Kannan P, Jönsson-Niedziolka M, Niedziolka-Jönsson J. Tungsten carbide nanotubes supported platinum nanoparticles as a potential sensing platform for oxalic acid. Anal Chem. 2014;86:7849–57.
Alizadeh T, Nayeri S. Graphite/Ag/AgCl nanocomposite as a new and highly efficient electrocatalyst for selective electroxidation of oxalic acid and its assay in real samples. Mater Sci Eng C. 2019;100:826–36.
Ensafi AA, Kazemzadeh A, Fresenius J. Flow injection spectrophotometric determination of ultra-trace amounts of oxalic acid. Anal Chem. 2000;367:590–2.
Jellum EJ. Profiling of human body fluids in healthy and diseased states using gas chromatography and mass spectrometry, with special reference to organic acids. J Chromatogr B. 1997;143:427–62.
Wu FW, He ZK, Luo QY, Zeng YE. HPLC determination of oxalic acid using tris (1,10-phenanthroline) ruthenium(II) chemiluminescence-application to the analysis of spinach. Food Chem. 1999;65:543–6.
Kawamura K, Barrie LA, Toom-Sauntry D. Intercomparison of the measurements of oxalic acid in aerosols by gas chromatography and ion chromatography. Atmos Environ. 2010;44:5316–9.
Hong F, Nilvebrant N, Jönsson L. Rapid and convenient determination of oxalic acid employing a novel oxalate biosensor based on oxalate oxidase and SIRE technology. Biosens Bioelectron. 2003;18:1173–81.
Ivandini T, Rao T, Fujishima A, Einaga Y. Electrochemical oxidation of oxalic acid at highly boron-doped diamond electrodes. Anal Chem. 2006;78:3467–71.
Matsuura H, Akabe S, Kitamura T, Takahashi T, Uchiyama S. Voltammetric detection of oxalic acid by using glassy carbon electrodes with covalently attached nitrogen-containing functional groups. Anal Sci. 2015;31:733–5.
Chauhan N, Narang Shweta J, Pundir CS. Immobilization of barley oxalate oxidase onto gold-nanoparticle-porous CaCO3 microsphere hybrid for amperometric determination of oxalate in biological materials. Clin Biochem. 2012;45:253–8.
Rodriguez JA, Hernandez P, Salazar V, Castrillejo Y, Barrado E. Amperometric biosensor for oxalate determination in urine using sequential injection analysis. Molecules. 2012;17:8859–71.
Ahmar H, Fakhari AR, Nabid MR, Rezaei SJT, Bide Y. Electrocatalytic oxidation of oxalic acid on palladium nanoparticles encapsulated on polyamidoamine dendrimer-grafted multi-walled carbon nanotubes hybrid material. Sensors Actuators B Chem. 2012;171–172:611–8.
Liu DD, Wang YX, Zhao GQ. Preparation of graphene aerogel for determining oxalic acid. Int J Electrochem Sci. 2015;10:6794–802.
Pundir CS, Chauhan N, Verma M. A novel amperometric biosensor for oxalate determination using multi-walled carbon nanotube-gold nanoparticle composite. Sensors Actuators B Chem. 2011;155:796–803.
Fakhari AR, Rafiee B, Ahmar H, Bagheri A. Electrocatalytic determination of oxalic acid by TiO2 nanoparticles/multiwalled carbon nanotubes modified electrode. Anal Methods. 2012;4:3314–9.
Raoof JB, Chekin F, Ehsani V. Palladium-doped mesoporous silica SBA-15 modified in carbon-paste electrode as a sensitive voltammetric sensor for detection of oxalic acid. Sensors Actuators B Chem. 2015;207:291–6.
Ma L, Zeng Q, Zhang M, Wang LS, Cheng FL. Direct determination of oxalic acid by a bare platinum electrode contrasting a platinum nanoparticles-modified glassy carbon electrode. J Exp Nanosci. 2016;11:1242–52.
Chen XM, Cai ZX, Huang ZY, Oyama M, Jiang YQ, Chen X. Non-enzymatic oxalic acid sensor using platinum nanoparticles modified on graphene nanosheets. Nanoscale. 2013;5:5779–83.
Liang CH, Ding L, Li C, Pang M, Su DS, Li WZ, et al. Nanostructured WCx/CNTs as highly efficient support of electrocatalysts with low Pt loading for oxygen reduction reaction. Energy Environ Sci. 2010;3:1121–7.
Kim W, Lee JS, Shin DH, Jang J. Platinum nanoparticles immobilized on polypyrrole nanofibers for non-enzyme oxalic acid sensor. J Mater Chem B. 2018;6:1272–8.
Bai J, Fang CL, Liu ZH, Chen Y. One pot, gold seed-assisted synthesis of gold/platinum wire nanoassemblies and their enhanced electrocatalytic activity for the oxalic acid oxidation. Nanoscale. 2016;8:2875–80.
Mishra P, Bhat BR. A study on the electro-reductive cycle of amino-functionalized graphene quantum dots immobilized on graphene oxide for amperometric determination of oxalic acid. Microchim Acta. 2019;186(1–10):646.
Zheng YQ, Yang CZ, Pu WH, Zhang ZD. Determination of oxalic acid in spinach with carbon nanotubes-modified electrode. Food Chem. 2009;114:1523–8.
Chigane M, Ishikawa M, Izaki M. Preparation of silica thin films by electrolyses of aqueous solution. Electrochem Solid-State Lett. 2002;5:D9–12.
Yang S, Jia WZ, Qian QY, Zhou YG, Xia XH. Simple approach for efficient encapsulation of enzyme in silica matrix with retained bioactivity. Anal Chem. 2009;81:3478–84.
Alessi A, Agnello S, Buscarino G, Gelardi FM. Raman and IR investigation of silica nanoparticles structure. J Non-Cryst Solids. 2013;362:20–4.
Borak B, Krzak J, Ptak M, Strek W, Lukowiak A. Spherical nanoparticles of europium-doped silica-calcia glass and glass-ceramic: spectroscopic characterization. J Mol Struct. 2013;1166:48–53.
Cristini-Robbe O, Raulin K, Dubart F, Bernard R, Kinowski C, Damene N, et al. Porous silica supports for micro-Raman spectroscopic studies of individual living cells. J Mol Struct. 2013;1050:232–7.
Wang XF, Cheng Y, You Z, Sha HL, Gong SX, Liu J, et al. Sensitive electrochemical determination of oxalic acid in spinach samples by a graphene-modified carbon ionic liquid electrode. Ionics. 2015;21:877–84.
Šljukić B, Baron R, Compton RG. Electrochemical determination of oxalate at pyrolytic graphite electrodes. Electroanalysis. 2007;19:918–22.
Arguello J, Magosso HA, Ramos RR, Canevari TC, Landers R, Pimentel VL, et al. Structural and electrochemical characterization of a cobalt phthalocyanine bulk-modified SiO2/SnO2 carbon ceramic electrode. Electrochim Acta. 2009;54:1948–53.
Gan Y, Hu N, He CJ, Zhou SQ, Tu JW, Liang T, et al. MnO2 nanosheets as the biomimetic oxidase for rapid and sensitive oxalate detection combining with bionic E-eye. Biosens Bioelectron. 2019;130:254–61.
Basharzad PF, Farhadi K, Forough M, Molaei R. Silver nanoparticles as a new colorimetric probe for determination of oxalic acid in urine. Sens Lett. 2016;14:906–12.
Dey NJ, Kumari N, Bhagat D, Bhattacharya S. Smart optical probe for ‘equipment-free’ detection of oxalate in biological fluids and plant-derived food items. Tetrahedron. 2018;74:4457–65.
Zhang SR, Wang Q, Tian GH, Ge HG. A fluorescent turn-off/on method for detection of Cu2+ and oxalate using carbon dots as fluorescent probes in aqueous solution. Mater Lett. 2014;115:233–6.
Alizadeh T, Nayeri S, Hamidi N. Graphitic carbon nitride (g-C3N4)/graphite nanocomposite as an extraordinarily sensitive sensor for sub-micromolar detection of oxalic acid in biological samples. RSC Adv. 2019;9:13096–103.
Oxalic-acid information. http://oxalicacidinfo.com/.