Simple Synthesis of Functionalized Superparamagnetic Magnetite/Silica Core/Shell Nanoparticles and their Application as Magnetically Separable High‐Performance Biocatalysts

Small - Tập 4 Số 1 - Trang 143-152 - 2008
Jinwoo Lee1, Youjin Lee1, Jong Kyu Youn2, Hyon Bin Na1, Taekyung Yu1, Hwan Kim1, Sang Mok Lee3, Yoon‐Mo Koo3, Ja Hun Kwak4, Hyun Gyu Park2, Ho Nam Chang2, Misun Hwang5, Je‐Geun Park5, Jungbae Kim6,4, Taeghwan Hyeon1
1National Creative Research Initiative Center for Oxide Nanocrystalline Materials and School of Chemical Engineering, Seoul National University, Seoul 151-744, Korea,
2Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
3Center for Advanced Bioseparation Technology, Inha University, Incheon 402-751, Korea
4Pacific Northwest National Laboratory, Richland, WA 99352, USA
5Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea
6Current address: Department of Chemical and Biological Engineering

Tóm tắt

AbstractUniformly sized silica‐coated magnetic nanoparticles (magnetite@silica) are synthesized in a simple one‐pot process using reverse micelles as nanoreactors. The core diameter of the magnetic nanoparticles is easily controlled by adjusting the w value ([polar solvent]/[surfactant]) in the reverse‐micelle solution, and the thickness of the silica shell is easily controlled by varying the amount of tetraethyl orthosilicate added after the synthesis of the magnetite cores. Several grams of monodisperse magnetite@silica nanoparticles can be synthesized without going through any size‐selection process. When crosslinked enzyme molecules form clusters on the surfaces of the magnetite@silica nanoparticles, the resulting hybrid composites are magnetically separable, highly active, and stable under harsh shaking conditions for more than 15 days. Conversely, covalently attached enzymes on the surface of the magnetite@silica nanoparticles are deactivated under the same conditions.

Từ khóa


Tài liệu tham khảo

 

Hafeil U., 1997, Scientific and Clinical Applications of Magnetic Carriers, 10.1007/978-1-4757-6482-6

10.1002/anie.200602866

10.1002/anie.200390352

10.1038/nbt1159

10.1002/nbm.924

Gu H., 2003, J. Am. Chem. Soc., 125, 15

10.1021/ja031776d

10.1039/b514130c

10.1021/ja055064u

10.1038/nm1467

10.1021/ja0428863

10.1021/ja055056d

 

10.1002/anie.200603148

10.1039/b207789b

10.1021/ja016812s

10.1126/science.287.5460.1989

10.1038/nature01208

O’Handley R. C., 1999, Modern Magnetic Materials

10.1002/anie.200352090

10.1002/1521-3773(20021115)41:22<4286::AID-ANIE4286>3.0.CO;2-M

10.1126/science.1092641

Shevchenko E. V., 2002, J. Am. Chem. Soc., 124, 11

10.1002/anie.200353562

10.1126/science.1058495

10.1021/ja026501x

10.1038/nmat817

10.1021/cm960077f

10.1038/nmat1251

 

10.1021/nl034731j

10.1021/cm035346y

10.1021/nl035172j

Garcia C. B. W., 2003, J. Am. Chem. Soc., 125, 13

 

10.1021/nl015681q

10.1021/cm052885p

10.1021/cm0512979

Lee D. C., 2006, J. Phys. Chem. B, 110, 11

 

10.1021/nl034816k

10.1002/smll.200500360

 

10.1002/smll.200500035

10.1002/smll.200500245

10.1002/anie.200502995

10.1088/0957-4484/16/7/011

10.1039/b503660g

10.1002/bit.21107

10.1016/S1381-1169(98)00043-0

10.1002/adfm.200400187

10.1016/0304-8853(91)90836-Y

10.1021/ja035474n

10.1021/ja047107x

10.1002/bit.20184

10.3109/10242429008992060