Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các hạt nano bạc nhúng trong mạng lưới sol–gel silicate chức năng amin để cảm biến cysteine, adenosine và NADH
Tóm tắt
Các hạt nano bạc nhúng trong mạng lưới sol–gel silicate chức năng amin đã được tổng hợp và sử dụng để cảm biến các phân tử sinh học như cysteine, adenosine và β-nicotinamide adenine dinucleotide (NADH). Quá trình cảm biến các phân tử sinh học này bởi sự lắp ghép của các hạt nano bạc được kích thích bởi phản ứng quang học từ cộng hưởng plasmon bề mặt (SPR) của các hạt nano bạc. Cảm biến quang học cho thấy giới hạn phát hiện thấp nhất (LOD) lần lượt là 5, 20 và 5 μM đối với cysteine, adenosine và NADH. Việc cảm biến các phân tử sinh học trong khoảng micromolar bằng cách sử dụng các hạt nano bạc nhúng trong sol–gel silicate chức năng amin đã được nghiên cứu trong sự hiện diện của các phân tử gây nhiễu như uridine, glycine, guanine và guanosine. Do đó, phương pháp hiện tại có thể mở ra một hướng mới cho sự phát triển của các thiết bị cảm biến quang học dựa trên hạt nano bạc cho các phân tử sinh học.
Từ khóa
#hạt nano bạc #cảm biến quang học #cysteine #adenosine #NADH #sol-gel #chức năng aminTài liệu tham khảo
Bally M, Halter M, Voros J, Grandin HM (2006) Interactions between titanium dioxide and phosphatidyl serine-containing liposomes: formation and patterning of supported phospholipid bilayers on the surface of a medically relevant material. Surf Inter Anal 38:1442–1458
Chen S-J, Huang Y-F, Huang C-C, Lee K-H, Lin Z-H, Chang H-T (2008) Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. Biosens Bioelectron 23:1749–1753
Dawn A, Nandi AK (2006) Formation of silver nanoparticles in deoxyribonucleic acid-poly(o-methoxyaniline) hybrid: a novel nano-biocomposite. J Phys Chem B 110:18291–18298
Goodhew PJ, Humphreys J, Beanland R (2001) Electron microscopy and analysis (chapter 3), 3rd edn. Taylor and Francis, London, p 47
Gorton L (2005) Biosensors and modern biospecific analytical techniques, 1st edn. Elsevier, Amsterdam
Guo J-Z, Cui H (2007) Lucigenin chemiluminescence induced by noble metal nanoparticles in the presence of adsorbates. J Phys Chem C 111:12254–12259
Henglein A, Meisel D (1998) Spectrophotometric observations of the adsorption of organosulfur compounds on colloidal silver nanoparticles. J Phys Chem B 102:8364–8366
Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539
Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493
Jackson AM, Hu Y, Silva PJ, Stellacci F (2006) From homoligand- to mixed-ligand- monolayer-protected metal nanoparticles: a scanning tunneling microscopy investigation. J Am Chem Soc 128:11135–11149
Jena BK, Raj CR (2006) Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Anal Chem 78:6332–6339
Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104:10549–10556
Kelly LK, Coronado E, Lin Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677
Lee KS, El-Sayed MA (2006) Surface plasmon resonances, optical properties, and electrical conductivity thermal hysteresis of silver nanofibers produced by the electrospinning technique. J Phys Chem B 110:19220–19225
Lee J-S, Ulmann PA, Han MS, Mirkin CA (2008) A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett 8:529–533
Li C, Wu C, Zheng J, Lai J, Zhang C, Zhao Y (2010a) LSPR sensing of molecular biothiols based on noncoupled gold nanorods. Langmuir 26:9130–9135
Li X, Lenhart JJ, Walker HW (2010b) Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 26:16690–16698
Lim SI, Zhong C-J (2009) Molecularly mediated processing and assembly of nanoparticles: exploring the interparticle interactions and structures. Acc Chem Res 42:798–808
Lim II, Ip W, Crew E, Njoki PN, Mott D, Zhong CJ, Pan Y, Zhou S (2007) Homocysteine-mediated reactivity and assembly of gold nanoparticles. Langmuir 23:826–833
Lin S-Y, Wu S-H, Chen C-H (2006) A simple strategy for prompt visual sensing by gold nanoparticles: general applications of interparticle hydrogen bonds. Angew Chem Int Ed 45:4948–4951
Lin J-H, Chang C-W, Wu Z-H, Tseng W-L (2010) Colorimetric assay for S-adenosylhomocysteine hydrolase activity and inhibition using fluorosurfactant-capped gold nanoparticles. Anal Chem 82:8775–8779
Liu J, Lu Y (2004) Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal Chem 76:1627–1632
Lu Y, Liu J (2007) Smart nanomaterials inspired by biology: dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Acc Chem Res 40:315–323
Lu C, Zu Y (2007) Specific detection of cysteine and homocysteine: recognizing one-methylene difference using fluorosurfactant-capped gold nanoparticles. Chem Commun (37):3871–3873
Maduraiveeran G, Ramaraj R (2009) Potential sensing platform of silver nanoparticles embedded in functionalized silicate shell for nitroaromatic compounds. Anal Chem 81:7552–7560
Matthew ES, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521
Muniz-Miranda M, Gellini C, Pagliai M, Innocenti M, Salvi PR, Schettino V (2010) SERS and computational studies on microRNA chains adsorbed on silver surfaces. J Phys Chem C 114:13730–13735
Nath N, Chilkoti A (2004) Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem 76:5370–5378
Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:1894–1898
Pakiari AH, Jamshidi Z (2007) Interaction of amino acids with gold and silver clusters. J Phys Chem A 111:4391–4396
Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA (2008) DNA-programmable nanoparticle crystallization. Nature 451:553–556
Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562
Shang L, Qin C, Wang T, Wang M, Wang L, Dong S (2007) Fluorescent conjugated polymer-stabilized gold nanoparticles for sensitive and selective detection of cysteine. J Phys Chem C 111:13414–13417
Shanmukh S, Jones L, Driskell J, Zhao Y-P, Dluhy R, Tripp RA (2006) Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett 6:2630–2636
Wang Z, Levy R, Fernig DG, Brust M (2006) Kinase-catalyzed modification of gold nanoparticles: a new approach to colorimetric kinase activity screening. J Am Chem Soc 128:2214–2215
Wei G, Zhou H, Liu Z, Song Y, Wang L, Sun L, Li Z (2005) One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network. J Phys Chem B 109:8738–8743
Wei X, Qi L, Tan J, Liu R, Wang F (2010) A colorimetric sensor for determination of cysteine by carboxymethyl cellulose-functionalized gold nanoparticles. Anal Chim Acta 671:80–84
Wu H-P, Huang C-C, Cheng T-L, Tseng W-L (2008) Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine. Talanta 76:347–352
Zayats M, Pogorelova SP, Kharitonov AB, Lioubashevski O, Katz E, Willner I (2003) Au nanoparticle-enhanced surface plasmon resonance sensing of biocatalytic transformations. Chem-A Europ J 9:6108–6114
Zhang J, Liu H, Zhan P, Wang Z, Ming N (2007) Assembly and photoinduced organization of mono- and oligopeptide molecules containing an azobenzene moiety. Adv Funct Mater 17:1558–1566
Zhang S, Xia J, Li X (2008) Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles. Anal Chem 80:8382–8388
Zhang J-Q, Wang Y-S, He Y, Jiang T, Yang H-M, Tan X, Kang R-H, Yuan Y-K, Shi L-F (2010) Determination of urinary adenosine using resonance light scattering of gold nanoparticles modified structure-switching aptamer. Anal Biochem 397:212–217