Silver films over silica microspheres (AgFOSM) as SERS substrates
Tài liệu tham khảo
Pelton, 2013
Raisner, 2012
Chang, 1982
Lin, 2010, Controlling SERS intensity by tuning the size and height of a silver nanoparticle array, Appl. Phys. A, 101, 185, 10.1007/s00339-010-5777-y
Pérez-Mayen, 2015, SERS substrates fabricated with star-like gold nanoparticles for zeptomole detection of analytes, Nanoscale, 7, 10249, 10.1039/C5NR02004B
Dhawan, 2010, Methodologies for developing Surface-Enhanced Raman Scattering (SERS) substrates for detection of chemical and biological molecules, IEEE Sens. J., 10, 608, 10.1109/JSEN.2009.2038634
Sant’Ana, 2009, Size-dependent SERS enhancement of colloidal silver nanoplates: the case of 2-amino-5-nitropyridine, J. Raman Spectrosc., 40, 183, 10.1002/jrs.2103
Le Ru, 2008, Surface-enhanced Raman spectroscopy on nanolithography-prepared substrates, Curr. Appl. Phys., 8, 467, 10.1016/j.cap.2007.10.073
Chu, 2007, A high sensitive fiber SERS probe based on silver nanorod arrays, Opt. Express, 15, 12230, 10.1364/OE.15.012230
Colson, 2013, Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials, J. Nanomater., 10.1155/2013/948510
Zhang, 2005, Optimized silver film onto nanosphere surfaces for the Biowarfare agent detection based on surface-enhanced Raman Spectroscopy, Mater. Res. Soc. Symp. Proc., 876E, R8.54.1
Zhang, 2005, Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimization of substrates fabricated by nanosphere lithography, IEE Proc. Nanobiotechnol., 152, 195, 10.1049/ip-nbt:20050009
Abdelsalam, 2007, SERS at structured palladium and platinum surfaces, J. Am. Chem. Soc., 129, 7399, 10.1021/ja071269m
Pisco, 2017, Nanosphere lithography for optical fiber tip nanoprobes, Light: Sci. Appl., 6, e16229, 10.1038/lsa.2016.229
Stropp, 2003, A new version of AgFON substrates for high-throughput analytical SERS applications, J. Raman Spectrosc., 34, 26, 10.1002/jrs.931
Lin, 2011, Size dependence of nanoparticle-SERS enhancement from silver film onto nanosphere (AgFON) substrate, Plasmonics, 6, 201, 10.1007/s11468-010-9188-x
Fang, 2008, Measurement of the distribution of site enhancements in surface-enhanced raman scattering, Science, 321, 388, 10.1126/science.1159499
Xiao, 2017, Rapid and sensitive detection of malachite green and melamine with silver film over nanospheres by surface-enhanced raman scattering, Plasmonics, 12, 1169, 10.1007/s11468-016-0372-5
Lee, 2016, Particle-film plasmons on periodic silver film over nanosphere (AgFON): a hybrid plasmonic nanoarchitecture for surface-enhanced raman spectroscopy, ACS Appl. Mater. Interfaces, 8, 634, 10.1021/acsami.5b09753
Rodriguez-Fernandez, 2009, The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres, Phys. Chem. Chem. Phys., 11, 5909, 10.1039/b905200n
Le Ru, 2007, Surface enhanced Raman scattering enhancement factors: a comprehensive study, J. Phys. Chem. C, 111, 13794, 10.1021/jp0687908
Stöber, 1968, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 69, 62, 10.1016/0021-9797(68)90272-5
Cheang-Wong, 2006, MeV ion beam deformation of colloidal silica particles, Nucl. Instr. and Meth. B, 242, 452, 10.1016/j.nimb.2005.08.078
Nie, 1997, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science, 275, 1102, 10.1126/science.275.5303.1102
Michaels, 1999, Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals, J. Am. Chem. Soc., 121, 9932, 10.1021/ja992128q
Kneipp, 1996, Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering, Phys. Rev. Lett., 76, 2444, 10.1103/PhysRevLett.76.2444
Maher, 2006, A conclusive demonstration of vibrational pumping under surface-enhanced Raman scattering conditions, J. Phys. Chem. B, 110, 11757, 10.1021/jp060306d