Silver Iodide Induced Resistive Switching in CsPbI3 Perovskite‐Based Memory Device

Advanced Materials Interfaces - Tập 6 Số 7 - 2019
Shuping Ge1, Yunxia Huang1, Xiaojuan Chen1, Xinran Zhang1, Zhongcheng Xiang1, Ruoxuan Zhang1, Wenping Li1, Yimin Cui1
1Key Laboratory of Micro-nano Measurement-Manipulation and Physics (Ministry of Education), Department of Physics, Beihang University, Beijing 100191, China

Tóm tắt

AbstractLead halide perovskites‐based memory devices have attracted considerable interest due to their unique current–voltage (I–V) hysteresis. Herein, all‐inorganic CsPbI3 perovskite film surviving 30 d of air storage is prepared by using a poly‐vinylpyrrolidone‐assisted passivation method under fully open‐air condition. Afterwards, a memory device with a sandwich structure of Ag/CsPbI3/indium tin oxide is manufactured. From I–V characteristics of pristine device, a spontaneous reaction between the active Ag electrode and I ions under air exposure is suggested. Furthermore, complete degradation of Ag electrode and formation of AgIx are verified, which also accompanies with generation of more iodine vacancies (VI) in perovskite film. The memory device with AgIx layer shows a bipolar resistive switching behavior, ultrahigh ON/OFF ratio (above 106), nonvolatile, reliable, and reproducible switching performance. Cell area and temperature dependent characteristics propose that the resistive switching is dominated by VI filament in low‐resistance state and thermally assisted hopping in high‐resistance state. This study provides a new insight to understand switching behavior from the way of electrode degradation and metal iodide formation in lead iodide perovskites‐based memory devices and also suggests a potential application for AgIx‐induced resistive switching in CsPbI3‐based memory device.

Từ khóa


Tài liệu tham khảo

10.1038/nature06932

10.1038/nnano.2008.160

10.1002/adma.200900375

10.1021/nl904092h

10.1021/nn405827t

10.1002/adfm.201100686

10.1002/smll.201703126

10.1016/j.tsf.2007.08.063

10.1063/1.3512866

10.1021/acsnano.6b02711

10.1039/C3NR05426H

10.1007/s12274-016-1006-0

10.1021/am301769f

10.1039/c3cp00132f

10.1002/adma.201304054

10.1002/aelm.201700567

10.1063/1.3660322

10.1016/j.ceramint.2014.04.060

10.1002/aenm.201701883

10.1016/j.nanoen.2017.09.035

10.1021/acs.jpclett.7b00975

10.1038/ncomms10334

10.1021/acs.accounts.5b00420

10.1002/adma.201502889

10.1021/acsami.7b08197

10.1002/adma.201700527

10.1021/acsnano.6b01643

10.1039/C6TC02503J

10.1002/aelm.201800190

10.1021/acsami.6b15149

10.1007/s12274-016-1288-2

10.1002/adfm.201705783

10.1021/acsami.8b07079

10.1039/C7TC05326F

10.1002/adfm.201704665

10.1039/C6CP03851D

10.1039/C5TA00358J

10.1021/ja511132a

10.1002/aelm.201700596

10.1016/j.orgel.2018.02.001

10.1039/C5TA06398A

10.1021/acs.jpclett.6b01576

10.1002/admi.201500195

10.1021/acsnano.7b07317

10.1039/C6EE02980A

10.1002/advs.201700662

10.1021/acsanm.8b01928

10.1039/C7NR05582J

10.1002/adma.201600859

10.1021/acsenergylett.7b00508

10.1038/s41467-018-03169-0

10.1021/acsami.8b07850

10.1021/nn204907t

10.1002/aelm.201800206

10.1002/adfm.200500538

10.1016/j.jhazmat.2014.11.020

10.1016/j.jece.2013.06.019

10.1039/C5RA27533D

10.1038/ncomms2784

10.1021/acs.jpcc.7b12817

10.1103/PhysRevB.85.195322

10.1038/srep03246

10.7567/JJAP.52.031801

10.1016/j.sse.2013.08.005