Silicon waveguide cantilever displacement sensor for potential application for on-chip high speed AFM

Frontiers of Optoelectronics - Tập 11 - Trang 53-59 - 2018
Peng Wang1, Aron Michael1, Chee Yee Kwok1
1School of Electrical Engineering and Telecommunications, University of New South Wales, Kensington, Australia

Tóm tắt

This paper reviews an initial achievement of our group toward the development of on-chip parallel high-speed atomic force microscopy (HS-AFM). A novel AFM approach based on silicon waveguide cantilever displacement sensor is proposed. The displacement sensing approach uniquely allows the use of nano-scale wide cantilever that has a high resonance frequency and low spring constant desired for on-chip parallel HS-AFM. The approach consists of low loss silicon waveguide with nano-gap, highly efficient misalignment tolerant coupler, novel high aspect ratio (HAR) sharp nano-tips that can be integrated with nano-scale wide cantilevers and electrostatically driven nano-cantilever actuators. The simulation results show that the displacement sensor with optical power responsivity of 0.31%/nm and AFM cantilever with resonance frequency of 5.4 MHz and spring constant of 0.21 N/m are achievable with the proposed approach. The developed silicon waveguide fabrication method enables silicon waveguide with 6 and 7.5 dB/cm transmission loss for TE and TM modes, respectively, and formation of 13 nm wide nano-gaps between silicon waveguides. The coupler demonstrates misalignment tolerance of ±1.8 μm for 5 μm spot size lensed fiber and coupling loss of 2.12 dB/facet for standard cleaved single mode fiber without compromising other performance. The nano-tips with apex radius as small as 2.5 nm and aspect ratio of more than 50 has been enabled by the development of novel HAR nanotip fabrication technique. Integration of the HAR tips onto an array of 460 nm wide cantilever beam has also been demonstrated.

Tài liệu tham khảo

Binnig G, Quate C F, Gerber C. Atomic force microscope. Physical Review Letters, 1986, 56(9): 930–933 Shibata M, Yamashita H, Uchihashi T, Kandori H, Ando T. Highspeed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nature Nanotechnology, 2010, 5(3): 208–212 Somnath S, Kim H J, Hu H, King W P. Parallel nanoimaging and nanolithography using a heated microcantilever array. Nanotechnology, 2014, 25(1): 014001 Pantazi A, Sebastian A, Antonakopoulos T A, Bächtold P, Bonaccio A R, Bonan J, Cherubini G, Despont M, DiPietro R A, Drechsler U, Dürig U, Gotsmann B, Häberle W, Hagleitner C, Hedrick J L, Jubin D, Knoll A, Lantz M A, Pentarakis J, Pozidis H, Pratt R C, Rothuizen H, Stutz R, Varsamou M, Wiesmann D, Eleftheriou E. Probe-based ultrahigh-density storage technology. IBM Journal of Research and Development, 2008, 52(4.5): 493–511 Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A. A highspeed atomic force microscope for studying biological macromolecules. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(22): 12468–12472 Fukuda S, Uchihashi T, Iino R, Okazaki Y, Yoshida M, Igarashi K, Ando T. High-speed atomic force microscope combined with single-molecule fluorescence microscope. Review of Scientific Instruments, 2013, 84(7): 073706 Cardenas J, Poitras C B, Robinson J T, Preston K, Chen L, Lipson M. Low loss etchless silicon photonic waveguides. Optics Express, 2009, 17(6): 4752–4757 Minne S C, Yaralioglu G, Manalis S R, Adams J D, Zesch J, Atalar A, Quate C F. Automated parallel high-speed atomic force microscopy. Applied Physics Letters, 1998, 72(18): 2340–2342 Dukic M, Adams J D, Fantner G E. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging. Scientific Reports, 2015, 5(1): 16393 Giessibl J F. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Applied Physics Letters, 1998, 73(26): 3956–3958 Göddenhenrich T, Lemke H, Hartmann U, Heiden C. Force microscope with capacitive displacement detection. Journal of Vacuum Science & Technology A, Vacuum, Surfaces, and Films, 1990, 8(1): 383–387 von Schmidsfeld A, Nörenberg T, Temmen M, Reichling M. Understanding interferometry for micro-cantilever displacement detection. Beilstein Journal of Nanotechnology, 2016, 7: 841–851 Cardenas J, Poitras C B, Robinson J T, Preston K, Chen L, Lipson M. Low loss etchless silicon photonic waveguides. Optics Express, 2009, 17(6): 4752–4757 Lee D H, Choo S J, Jung U, Lee K W, Kim K W, Park J H. Low-loss silicon waveguide with sidewall roughness reduction using a SiO2 hard mask and fluorine-based dry etching. Journal of Micromechanics and Microengineering, 2015, 25(1): 015003 Dong P, Qian W, Liao S, Liang H, Kung C C, Feng N N, Shafiiha R, Fong J, Feng D, Krishnamoorthy A V, Asghari M. Low loss shallow-ridge silicon waveguides. Optics Express, 2010, 18(14): 14474–14479 Debnath K, Arimoto H, Husain M, Prasmusinto A, Al-Attili A, Petra R, Chong H, Reed G, Saito S. Low-loss silicon waveguides and grating couplers fabricated using anisotropic wet etching technique. Frontiers in Materials, 2016, 3, doi:10.3389/famts.2016.00010 Pafchek R, Tummidi R, Li J, Webster MA, Chen E, Koch T L. Lowloss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation. Applied Optics, 2009, 48(5): 958–963 Lee K K, Lim D R, Kimerling L C, Shin J, Cerrina F. Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction. Optics Letters, 2001, 26(23): 1888–1890 Wang P, Michael A, Kwok C Y. Fabrication of sub-micro waveguides with vertical sidewall and reduced roughness for low loss applications. Procedia Engineering, 2014, 87: 979–982 Taillaert D, Van Laere F, Ayre M, Bogaerts W, Van Thourhout D, Bienstman P, Baets R. Grating couplers for coupling between optical fibers and nanophotonic waveguides. Japanese Journal of Applied Physics, 2006, 45(8A): 6071–6077 Tang Y, Wang Z, Wosinski L, Westergren U, He S. Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits. Optics Letters, 2010, 35(8): 1290–1292 Cardenas J, Poitras C B, Luke K, Luo L W, Morton P A, Lipson M. High coupling efficiency etched facet tapers in silicon waveguides. IEEE Photonics Technology Letters, 2014, 26(23): 2380–2382 Dewanjee A, Caspers J N, Aitchison J S, Mojahedi M. Demonstration of a compact bilayer inverse taper coupler for Si-photonics with enhanced polarization insensitivity. Optics Express, 2016, 24(25): 28194–28203 Fang Q, Liow T Y, Song J F, Tan C W, Yu M B, Lo G Q, Kwong D L. Suspended optical fiber-to-waveguide mode size converter for silicon photonics. Optics Express, 2010, 18(8): 7763–7769 Chen L, Doerr C R, Chen Y K, Liow T Y. Low-loss and broadband cantilever couplers between standard cleaved fibers and high-indexcontrast Si3N4 or Si waveguides. IEEE Photonics Technology Letters, 2010, 22(23): 1744–1746 Wang P, Michael A, Kwok C Y. Cantilever inverse taper coupler with SiO2 gap for submicron silicon waveguides. IEEE Photonics Technology Letters, 2017, 29(16): 1407–1410 Koelmans W W, Peters T, Berenschot E, de Boer M J, Siekman M H, Abelmann L. Cantilever arrays with self-aligned nanotips of uniform height. Nanotechnology, 2012, 23(13): 135301 Vermeer R, Berenschot E, Sarajlic E, Tas N, Jansen H. Fabrication of novel AFM probe with high-aspect-ratio ultra-sharp three-face silicon nitride tips. In: Proceedings of 14th IEEE International Conference on Nanotechnology, 2014, 229–233 Li J D, Xie J, Xue W, Wu D M. Fabrication of cantilever with selfsharpening nano-silicon-tip for AFM applications. Microsystem Technologies, 2013, 19(2): 285–290 Miyazawa K, Izumi H, Watanabe-Nakayama T, Asakawa H, Fukuma T. Fabrication of electron beam deposited tip for atomicscale atomic force microscopy in liquid. Nanotechnology, 2015, 26 (10): 105707 Beard J D, Gordeev S N. Fabrication and buckling dynamics of nanoneedle AFM probes. Nanotechnology, 2011, 22(17): 175303 Engstrom D S, Savu V, Zhu X, Bu I Y, Milne W I, Brugger J, Boggild P. High throughput nanofabrication of silicon nanowire and carbon nanotube tips on AFM probes by stencil-deposited catalysts. Nano Letters, 2011, 11(4): 1568–1574 Edgeworth J P, Burt D P, Dobson P S, Weaver J MR, Macpherson J V. Growth and morphology control of carbon nanotubes at the apexes of pyramidal silicon tips. Nanotechnology, 2010, 21(10): 105605 Spindt C A. A thin film field emission cathode. Journal of Applied Physics, 1968, 39(7): 3504–3505 Itoh S, Watanabe T, Ohtsu K, Taniguchi M, Uzawa S, Nishimura N. Experimental study of field emission properties of the Spindt-type field emitter. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1995, 13(2): 487–490 Spindt C A, Holland C E, Schwoebel P R, Brodie I. Field emitter array development for microwave applications. II. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1998, 16(2): 758–761 Wang P, Michael A, Kwok C Y. High aspect ratio sharp nanotip for nanocantilever integration at CMOS compatible temperature. Nanotechnology, 2017, 28(32): 32T01 Minne S C, Adams J D, Yaralioglu G, Manalis S R, Atalar A, Quate C F. Centimeter scale atomic force microscope imaging and lithography. Applied Physics Letters, 1998, 73(12): 1742–1744 Dukic M, Adams J D, Fantner G E. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging. Scientific Reports, 2015, 5(1): 16393 Li M, Pernice W H P, Tang H X. Broadband all-photonic transduction of nanocantilevers. Nature Nanotechnology, 2009, 4 (6): 377–382 Shoaib M, Hisham N, Basheer N, Tariq M. Frequency and displacement analysis of electrostatic cantilever based MEMS sensor. Analog Integrated Circuits & Signal Processing, 2016, 88 (1): 1–11