Silicon micromachined ultrasonic scalpel for the dissection and coagulation of tissue

Springer Science and Business Media LLC - Tập 17 - Trang 1-12 - 2015
R. Lockhart1, F. Friedrich1,2, D. Briand1, P. Margairaz2, J.-P. Sandoz3, J. Brossard3, H. Keppner3, W. Olson4, T. Dietz4, Y. Tardy2, H. Meyer5, P. Stadelmann5, C. Robert5, A. Boegli5, P.-A. Farine5, N. F. de Rooij1, J. Burger2,6,7
1Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Sensors, Actuators and Microsystems Laboratory (SAMLAB), Neuchâtel, Switzerland
2Medos International, A Johnson & Johnson Company, Le Locle, Switzerland
3Haute Ecole Arc Ingénierie, Neuchâtel, Switzerland
4Ethicon Endo-Surgery, Cincinnati, USA
5Ecole Polytechnique Fédérale de Lausanne (EPFL), Electronics and Signal Processing Lab, Neuchâtel, Switzerland
6Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
7Zurich University of Applied Sciences, Institute of Mechatronic Systems, Winterthur, Switzerland

Tóm tắt

This work presents a planar, longitudinal mode ultrasonic scalpel microfabricated from monocrystalline silicon wafers. Silicon was selected as the material for the ultrasonic horn due to its high speed of sound and thermal conductivity as well as its low density compared to commonly used titanium based alloys. Combined with a relatively high Young’s modulus, a lighter, more efficient design for the ultrasonic scalpel can be implemented which, due to silicon batch manufacturing, can be fabricated at a lower cost. Transverse displacement of the piezoelectric actuators is coupled into the planar silicon structure and amplified by its horn-like geometry. Using finite element modeling and experimental displacement and velocity data as well as cutting tests, key design parameters have been identified that directly influence the power efficiency and robustness of the device as well as its ease of controllability when driven in resonance. Designs in which the full- and half-wave transverse modes of the transducer are matched or not matched to the natural frequencies of the piezoelectric actuators have been evaluated. The performance of the Si micromachined scalpels has been found to be comparable to existing commercial titanium based ultrasonic scalpels used in surgical operations for efficient dissection of tissue as well as coaptation and coagulation of tissue for hemostasis. Tip displacements (peak-to-peak) of the scalpels in the range of 10–50 μm with velocities ranging from 4 to 11 m/s have been achieved. The frequency of operation is in the range of 50–100 kHz depending on the transverse operating mode and the length of the scalpel. The cutting ability of the micromachined scalpels has been successfully demonstrated on chicken tissue.

Tài liệu tham khảo

S. Albert, C. Guedon, C. Halimi, J.P. Cristofari, B. Barry, The Use of Harmonic Scalpel for Free Flap Dissection in Head and Neck Reconstructive Surgery. Plast. Surg. Int. (2012). doi:10.1155/2012/302921 J.F. Amaral, Ultrasonic dissection. Endosc. Surg. Allied. Technol. 2, 181–185 (1994) D.N. Armstrong, W.L. Ambroze, M.E. Schertzer, G.R. Orangio, Harmonic Scalpel vs. electrocautery hemorrhoidectomy: a prospective evaluation. Dis. Colon Rectum 44, 558–564 (2001) S.A. Boddy, J.W. Ramsay, S.S. Carter, P.J. Webster, D.A. Levison, H.N. Whitfield, Tissue effects of an ultrasonic scalpel for clinical surgical use. Urol. Res. 15, 49–52 (1987) L.J. Bond, W.W. Cimino, Physics of ultrasonic surgery using tissue fragmentation: Part II. Ultrasound Med. Biol. 22, 101–117 (1996a) L.J. Bond, W.W. Cimino, Physics of ultrasonic surgery using tissue fragmentation. Ultrasonics 34, 579–585 (1996b) P.S. Brazio, P.C. Laird, C. Xu, J. Gu, N.S. Burris, E.N. Brown, Z.N. Kon, R.S. Poston, Harmonic scalpel versus electrocautery for harvest of radial artery conduits: reduced risk of spasm and intimal injury on optical coherence tomography. J. Thorac. Cardiovasc. Surg. 136, 1302–1308 (2008). doi:10.1016/j.jtcvs.2008.05.060 T.E. Burdette, C.L. Kerrigan, K. Homa, K.A. Homa, Harmonic scalpel versus electrocautery in breast reduction surgery: a randomized controlled trial. Plast. Reconstr. Surg. 128, 243e–249e (2011). doi:10.1097/PRS.0b013e318221da3e M. Cikirikcioglu, M. Yasa, Z. Kerry, H. Posacioglu, M. Boga, T. Yagdi, N. Topcuoglu, S. Buket, A. Hamulu, The effects of the Harmonic Scalpel on the vasoreactivity and endothelial integrity of the radial artery: a comparison of two different techniques. J. Thorac. Cardiovasc. Surg. 122, 624 (2001) W.W. Cimino, L.J. Bond, Physics of ultrasonic surgery using tissue fragmentation: Part I. Ultrasound Med. Biol. 22, 89–100 (1996) K. Ebina, H. Hasegawa, H. Kanai, Investigation of frequency characteristics in cutting of soft tissue using prototype ultrasonic knives. Jpn. J. Appl. Phys. 46, 4793–4800 (2007) E. Eisner, The design of resonant vibrators, in: physical acoustics principles and methods (Academic Press Inc, New York, 1964), pp. 353–363 F. Ericson, J.-Å. Schweitz, Micromechanical fracture strength of silicon. J. Appl. Phys. 68, 5840–5844 (1990). doi:10.1063/1.346957 C. Funke, S. Wolf, D. Stoyan, Modeling the tensile strength and crack length of wire-sawn silicon wafers. J. Sol. Energy Eng. 131, 011012–011012 (2009). doi:10.1115/1.3028048 M. Kauko, New techniques using the ultrasonic scalpel in laparoscopic hysterectomy. Curr. Opin. Obstet. Gynecol. 10, 303–305 (1998) C.D. Kelman, Phaco-emulsification and aspiration. A new technique of cataract removal. A preliminary report. Am. J. Ophthalmol. 64, 23–35 (1967) B. Kiaii, W.D. Boyd, R. Rayman, W.B. Dobkowski, S. Ganapathy, G. Jablonsky, R.J. Novick, Robot-assisted computer enhanced closed-chest coronary surgery: preliminary experience using a Harmonic Scalpel and ZEUS. Heart Surg. Forum 3, 194–197 (2000) Y. Kuang, M. Sadiq, S. Cochran, Zhihong Huang, Effects of power levels and soft tissue loads on an ultrasonic planar tool driven by PMN-PT d31 plates. Ultrason. Symp. IUS. IEEE. Int. 1432–1435 (2013). doi:10.1109/ULTSYM.2013.0363 A. Lal, Micromachined silicon ultrasonic longitudinal mode actuators: theory and applications to surgery, pumping and atomization (University of California, Berkeley, 1996) A. Lal, R.M. White, Silicon microfabricated horns for power ultrasonics. Sens. Actuators Phys 54, 542–546 (1996). doi:10.1016/S0924-4247(97)80011-8 P. Lamm, G. Juchem, P. Weyrich, A. Schütz, B. Reichart, The harmonic scalpel: optimizing the quality of mammary artery bypass grafts. Ann. Thorac. Surg. 69, 1833–1835 (2000) F. Lumachi, A.A. Brandes, P. Burelli, S.M.M. Basso, M. Iacobone, M. Ermani, Seroma prevention following axillary dissection in patients with breast cancer by using ultrasound scissors: a prospective clinical study. Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 30, 526–530 (2004). doi:10.1016/j.ejso.2004.03.003 A.L. Melck, S.M. Wiseman, Harmonic scalpel compared to conventional hemostasis in thyroid surgery: a meta-analysis of randomized clinical trials. Int. J. Surg. Oncol. (2010). doi:10.1155/2010/396079 F.U. Metternich, C. Sagowski, S. Wenzel, T. Jäkel, R. Leuwer, U. Koch, Preliminary results for superficial parotidectomy using the ultrasonically activated scalpel (Ultracision Harmonic Scalpel). Laryngorhinootologie 82, 514–519 (2003). doi:10.1055/s-2003-40894 T. Nagoya, M.K. Kurosawa, A micro ultrasonic scalpel with sensing function. IEEE. 1070–1073 (2003). doi:10.1109/ULTSYM.2003.1293585 B.J. O’Daly, E. Morris, G.P. Gavin, J.M. O’Byrne, G.B. McGuinness, High-power low-frequency ultrasound: a review of tissue dissection and ablation in medicine and surgery. J. Mater. Process. Technol. 200, 38–58 (2008). doi:10.1016/j.jmatprotec.2007.11.041 G. Pavlíková, R. Foltán, M. Horká, T. Hanzelka, H. Borunská, J. Šedý, Piezosurgery in oral and maxillofacial surgery. Int. J. Oral Maxillofac. Surg. 40, 451–457 (2011). doi:10.1016/j.ijom.2010.11.013 K.E. Petersen, Silicon as a mechanical material. IEEE Proc. 70, 420–457 (1982) M.R. Sadiq, Y. Kuang, Z. Huang, S. Cochran, Ultrasonic cutting with a d31-mode PMN-PT-driven planar tool. Ultrason. Symp. IUS. IEEE. Int. 2189–2192 (2011). doi:10.1109/ULTSYM.2011.0543 I. Sasagawa, H. Suzuki, T. Izumi, Y. Suzuki, T. Tateno, T. Nakada, Posterior retroperitoneoscopic partial adrenalectomy using ultrasonic scalpel for aldosterone-producing adenoma. J. Endourol. Endourol. Soc. 14, 573–576 (2000). doi:10.1089/08927790050152177 J.A. Sherman, H.T. Davies, Ultracision®: the harmonic scalpel and its possible uses in maxillofacial surgery. Br. J. Oral Maxillofac. Surg. 38, 530–532 (2000). doi:10.1054/bjom.2000.0502 A. Stoff, M.A. Reichenberger, D.F. Richter, Comparing the ultrasonically activated scalpel (Harmonic) with high-frequency electrocautery for postoperative serous drainage in massive weight loss surgery. Plast. Reconstr. Surg. 120, 1092–1093 (2007). doi:10.1097/01.prs.0000278224.14221.c9 S. Takao, H. Shinchi, K. Maemura, T. Aikou, Ultrasonically activated scalpel is an effective tool for cutting the pancreas in biliary-pancreatic surgery: experimental and clinical studies. J. Hepatobiliary Pancreat. Surg. 7, 58–62 (2000). doi:10.1007/s005340000070058.534 J.J. Vaitekunas, F.B. Stulen, E.S. Grood, Effects of frequency on the cutting ability of an ultrasonic surgical instrument. 31st Annu. Ultrason. Ind. Assoc. Symp. Atlanta USA. (2001) R.A. Walker, Z.A. Syed, Harmonic scalpel tonsillectomy versus electrocautery tonsillectomy: a comparative pilot study. Otolaryngol.Head Neck Surg. Off. J. Am. Acad. Otolaryngol. Head Neck Surg. 125, 449–455 (2001) D.-A. Wang, W.-Y. Chuang, K. Hsu, H.-T. Pham, Design of a Bézier-profile horn for high displacement amplification. Ultrasonics 51, 148–156 (2011). doi:10.1016/j.ultras.2010.07.004 S. Watanabe, H. Sato, K. Tawaraya, M. Tsubota, M. Endo, M. Seki, Advantages and disadvantages of harmonic scalpel in thoracic surgery. Kyobu Geka 51, 374–378 (1998)