Silicon Photovoltaic Cells with Deep p–n-Junction

Applied Solar Energy - Tập 56 Số 1 - Trang 13-17 - 2020
М. К. Бахадырханов1, С. Б. Исамов1, Z. T. Kenzhaev2, D. Melebaev3, Kh. F. Zikrillayev1, G. A. Ikhtiyarova1
1Tashkent State Technical University, 100095, Tashkent, Uzbekistan
2Karakalpak State University, 230112, Nukus, Uzbekistan
3Institute of Physics and Mathematics, Academy of Sciences of Turkmenistan, 744000, Ashkhabad, Turkmenistan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Panaiotti, I.E. and Terukov, E.I., A study of the effect of radiation on recombination loss in heterojunction solar cells based on single-crystal silicon, Tech. Phys. Lett., 2019, vol. 45, no. 5, pp. 193–196.

Fuks, B.I., Improvement of the efficiency of silicon solar cells, Semiconductors, 2014, vol. 48, no. 12, pp. 1664–1673.

Sachenko, A.V., Shkrebtii, A.I., Korkishko, R.M., Kostylyov, V.P., Kulish, N.R., and Sokolovskyi I.O., Features of photoconversion in highly efficient silicon solar cells, Semiconductors, 2015, vol. 49, no. 2, pp. 264–269.

Afanasev, V.P., Terukov, E.I., Sherchenkov, A.A., Tonkoplenochnye solnechnye elementy na osnove kremniya (Silicon-Based Thin Film Solar Cells), 2nd ed., St. Petersburg: SPbGETU LETI, 2011.

Gremenok, V.F., Tivanov, M.S., Zalecskii, V.B., Solnechnye elementy na osnove poluprovodnikovykh materialov (Semiconductor Materials Based Solar Cells), Minsk: Izd. Tsentr BGU, 2007.

Milichko, V.A., Shalin, A.S., Mukhin, I.S., Kovrov, A.E., Krasilin, A.A., Vinogradov, A.V., Belov, P.A., and Simovski C.R., Solar photovoltaics: current state and trends, Phys. Usp., 2016, vol. 59, no. 8, pp. 727–772.

Lunin, L.S., Lunina, M.L., Pashchenko, A.S., Alfimova, D.L., Arustamyan, D.A., and Kazakova, A.E., Cascade solar cells based on GaP/Si/Ge nanoheterostructures, Tech. Phys. Lett., 2019, vol. 45, no. 6, pp. 250–252.

Bakhadyrhanov, M.K., Sodikov, U.X., Melibayev, D. et al., Silicon with clusters of impurity atoms as a novel material for optoelectronics and photovoltaic, J. Mater. Sci. Chem. Eng., 2018, vol. 6, pp. 180–190. https://doi.org/10.4236/msce.2018.64017

Bakhadyrkhanov, M.K., Isamov, S.B., Iliev, Kh.M., Tachilin, S.A., and Kamalov, K.U., Silicon-based photocells of enhanced spectral sensitivity with nano-sized graded band gap structures, Appl. Sol. Energy, 2014, vol. 50, no. 2, pp. 61–63.

Bakhadyrkhanov, M.K., Zainabidinov, S., and Khamidov, A., Some characteristics of diffusion and electrotransport of nickel in silicon, Sov. Phys. Semicond., 1980, vol. 14, p. 243.

Lindroos, J., Fenning, D.P., Backlund, D.J., et al., Nickel: a very fast diffuser in silicon, J. Appl. Phys., 2013, vol. 113, no. 20, p. 4906. https://doi.org/10.1063/1.4807799

Lindroos, J., Copper-related light-induced degradation in crystalline silicon, Doctoral Dissertation, no. 37/2015, Aalto: Aalto Univ., 2015, p. 80. http://urn.fi/URN.

Bakhadyrkhanov, M.K., Ismailov, K.A., Ismaylov, B.K., and Saparniyazova, Z.M., Clusters of nickel atoms and controlling their state in silicon lattice, J. Lashkaryov Inst. Semicond. Phys., NAS Ukr., 2018, vol. 21, no. 4, pp. 300–304. https://doi.org/10.15407/spqeo21.04.XXX

Mil’vidskii, M.G. and Chaldyshev, V.V., Nanoscale atomic clusters in semiconductors – a new approach to the formation of material properties, Semiconductors, 1998, vol. 32, no. 5, pp. 457–465.

Babich, V.M., Bletskan, N.I., and Venger, E.F., Kislorod v monokristallakh kremniya (Oxygen in Silicon Single Crystals). Kiev: Interpres LTD, 1997.

Boltaks, B.I., Diffuziya i tochechnye defekty v poluprovodnikakh (Diffusion and Point Defects in Semiconductors), Leningrad: Nauka, 1972.

König D., Gutsch, S., Gnaser, H., et al., Location and electronic nature of phosphorus in the Si nanocrystal- SiO2 system, Sci. Rep., 2015, vol. 5, p. 9702. https://doi.org/10.1038/srep09702

Hung, V.V., Thanh Hong, Ph.Th., and Van Khue, B., Boron and phosphorus diffusion in silicon: interstitial, vacancy and combination mechanisms, Proc. Natl. Conf. Theor. Phys., 2010, vol. 35, pp. 73–79.

Neustroev, E.P., Smagulova, S.A., Antonova, I.V., and Safronov, L.N., Formation of electrically active centers in silicon irradiated with electrons and then annealed at temperatures of 400–700ºS, Semiconductors, 2004, vol. 38, no. 7, pp. 758–762.

Abdurakhmanov, B.A., Bakhadirkhanov, M.K., Ayupov, K.S., et al., Formation of clusters of impurity atoms of nickel in silicon and controlling their parameters, Nanosci. Nanotechnol., 2014, vol. 4, no. 2, pp. 23–26. https://doi.org/10.5923/j.nn.20140402.01

Bakhadyrkhanov, M.K., Iliyev, Kh.M., Ayupov, K.S., et al., Self-organization of nickel atoms in silicon, Inorg. Mater., 2011, vol. 47, no. 9, pp. 962–964.

Abdurakhmanov, B.A., Bakhadirkhanov, M.K., Valiev, S.A., and Tachilin, S.A., Development of a new class of rectifier columns with controlled parameters based on the structures of nickel-silicon atom clusters, Pribory, 2016, no. 4, pp. 51–55.

Bakhadyrkhanov, M.K., Valiev, S.A., Zikrillaev, N.F., et al., Silicon photovoltaic cells with clusters of nickel atoms, Appl. Sol. Energy, 2016, vol. 52, no. 4, pp. 278–281.

Astashchenkov, A.S., Brinkevich, D.I., and Petrov, V.V., Properties of silicon doped with nickel impurity by diffusion method, Dokl. BGUIR, 2018, vol. 38, no. 8, pp. 37–43.

Orlov, V.I., Yarykin, N.A., and Yakimov, E.B., Effect of nickel and copper introduced at room temperature on the recombination properties of extended defects in silicon, Semiconductors, 2019, vol. 53, no. 4, pp. 411–414.

Peter, Y.Yu. and Cardona, M., Fundamentals of Semiconductors, Physics and Materials Properties, 4th ed., Heidelberg, Dordrecht, London, New York: Springer, 2010, p. 775.