Silicene, a promising new 2D material

Progress in Surface Science - Tập 90 Số 1 - Trang 46-83 - 2015
Hamid Oughaddou1,2, Hanna Enriquez2, Mohammed Rachid Tchalala2,3, Handan Yıldırım4, Andrew J. Mayne2, Azzedine Bendounan5, G. Dujardin2, Mustapha Ait Ali3, Abdelkader Kara4
1Département de Physique, Université de Cergy-Pontoise, F-95031, Cergy-Pontoise Cedex, France
2Institut des Sciences Moléculaires d’Orsay, ISMO-CNRS, Bât. 210, Université Paris-Sud, F-91405 Orsay, France
3Laboratoire de Chimie de Coordination et Catalyse, Département de Chimie, Faculté des Sciences-Semlalia, Université Cadi Ayyad, Marrakech 40001, Morocco
4Department of Physics, University of Central Florida, Orlando, FL 32816, USA
5TEMPO Beamline, Synchrotron Soleil, L’Orme des Merisiers Saint-Aubin, B.P. 48, 91192 Gif-sur-Yvette Cedex, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Novoselov, 2004, Electric field effect in atomically thin carbon film, Science, 306, 666, 10.1126/science.1102896

Berger, 2006, Electronic confinement and coherence in patterned epitaxial graphene, Science, 312, 1191, 10.1126/science.1125925

Meyer, 2007, The structure of suspended graphene sheets, Nature, 446, 60, 10.1038/nature05545

Castro Neto, 2009, The electronic properties of graphene, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109

Guzmán-Verri, 2007, Electronic structure of silicon-based nanostructures, Phys. Rev. B, 76, 075131, 10.1103/PhysRevB.76.075131

Cahangirov, 2009, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett., 102, 236804, 10.1103/PhysRevLett.102.236804

Kara, 2012, A review on silicene – new candidate for electronics, Surf. Sci. Rep., 67, 1, 10.1016/j.surfrep.2011.10.001

Lebègue, 2009, Electronic structure of two-dimensional crystals from ab initio theory, Phys. Rev. B, 79, 115409, 10.1103/PhysRevB.79.115409

Liu, 2011, Quantum spin Hall effect in silicene and two-dimensional Germanium, Phys. Rev. Lett., 107, 076802, 10.1103/PhysRevLett.107.076802

Rachel, 2014, Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene, Phys. Rev. B, 89, 195303, 10.1103/PhysRevB.89.195303

Ezawa, 2013, Spin valleytronics in silicene: quantum spin hall–quantum anomalous hall insulators and single-valley semimetals, Phys. Rev. B, 87, 155415, 10.1103/PhysRevB.87.155415

Sahin, 2013, Stone-wales defects in silicene: formation, stability, and reactivity of defect sites, Phys. Rev. B, 87, 085444

Yamakage, 2013, Charge transport in pn and npn junctions of silicene, Phys. Rev. B, 88, 085322, 10.1103/PhysRevB.88.085322

Sivek, 2013, Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene: stability and electronic and phonon properties, Phys. Rev. B, 87, 085444, 10.1103/PhysRevB.87.085444

Oughaddou, 1999, Growth mode and dissolution kinetics of germanium thin films on a Ag(001) surface: an AES-LEED investigation, Surf. Sci., 429, 320, 10.1016/S0039-6028(99)00394-5

Oughaddou, 2000, Ge/Ag(111) semiconductor-on-metal growth: formation of an Ag2Ge surface alloy, Phys. Rev. B, 62, 16653, 10.1103/PhysRevB.62.16653

Oughaddou, 2000, Ge tetramer structure of the p(2√2×4√2)R45 surface reconstruction of Ge/Ag(001): a surface X-ray diffraction and STM study, Phys. Rev. B., 61, 5692, 10.1103/PhysRevB.61.5692

Léandri, 2004, Self-assembled germanium nanoclusters on silver (110), Surf. Sci., 573, L369, 10.1016/j.susc.2004.10.005

Aufray, 2010, Graphene-like silicon NRs on Ag 110: a possible formation of silicene, Appl. Phys. Lett., 96, 183102, 10.1063/1.3419932

Enriquez, 2012, Silicene structures on silver surfaces, J. Phys.: Condens. Matter, 24, 314211

Lalmi, 2010, Epitaxial growth of a silicene sheet, Appl. Phys. Lett., 97, 223109, 10.1063/1.3524215

Tchalala, 2014, Atomic structure of silicene NRs on Ag(110), J. Phys: Conf. Ser., 491, 012002

Lin, 2012, Structure of silicene grown on Ag(111), Appl. Phys. Expr., 5, 45802, 10.1143/APEX.5.045802

Vogt, 2012, Silicene: compelling experimental evidence for graphene like two-dimensional silicon, Phys. Rev. Lett., 108, 155501, 10.1103/PhysRevLett.108.155501

Jamgotchian, 2012, Growth of silicene layers on Ag(111): unexpected effect of the substrate temperature, J. Phys.: Condens. Matter, 24, 172001

Feng, 2012, Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett., 12, 3507, 10.1021/nl301047g

Chiappe, 2012, Local electronic properties of corrugated silicene phases, Adv. Mater., 24, 5088, 10.1002/adma.201202100

Jamgotchian, 2014, Silicene on Ag(111): domains and local defects of the observed superstructures, J. Phys: Conf. Ser., 491, 012001

Enriquez, 2014, Atomic structure of the (2√3×2√3)R30 of silicene on Ag(111) surface, J. Phys: Conf. Ser., 491, 012004

Tchalala, 2014, Atomic and electronic structures of the (√13×√13)R13.9 of silicene sheet on Ag(111), Appl. Surf. Sci., 303, 61, 10.1016/j.apsusc.2014.02.064

Majzik, 2013, Combined AFM and STM measurements of a silicene sheet grown on the Ag(111) surface, J. Phys.: Condens. Matter, 25, 225301

Fleurence, 2012, Experimental evidence for epitaxial silicene on diboride thin films, Phys. Rev. Lett., 108, 245501, 10.1103/PhysRevLett.108.245501

Meng, 2013, Buckled silicene formation on Ir(111), Nano Lett., 13, 685, 10.1021/nl304347w

Tchalala, 2013, Formation of one-dimensional self-assembled silicon NRs on Au(110)-(2×1), Appl. Phys. Lett., 102, 083107, 10.1063/1.4793536

Tchalala, 2013, J. Phys.: Condens. Matter, 25, 442001

Nakano, 2006, Angew. Chem., 118, 6451, 10.1002/ange.200600321

Nakano, 2006, Angew. Chem. Int. Ed., 45, 6303, 10.1002/anie.200600321

Léandri, 2005, Self-aligned silicon quantum wires on Ag(110), Surf. Sci., 574, 9, 10.1016/j.susc.2004.10.052

Le Lay, 2009, Physics and chemistry of silicene nano-ribbons, Appl. Surf. Sci., 256, 524, 10.1016/j.apsusc.2009.07.114

Kara, 2009, Physics of silicene stripes, J. Supercond. Nov. Magn., 22, 259, 10.1007/s10948-008-0427-8

Kara, 2010, Silicon nano-ribbons on Ag(110): a computational investigation, J. Phys.: Condens. Matter, 22, 045004

Ronci, 2010, STM/STS study of silicon NW grown on the Ag(110) surface, Phys. Status Solidi C, 7, 2716, 10.1002/pssc.200983839

De Padova, 2010, Evidence of graphene-like electronic signature in silicene NRs, Appl. Phys. Lett., 96, 261905, 10.1063/1.3459143

De Padova, 2012, 1D graphene-like silicon systems: silicene nano-ribbons, J. Phys.: Condens. Matter, 24, 223001

Sahaf, 2007, Formation of a one-dimensional grating at the molecular scale by self-assembly of straight silicon nanowires, Appl. Phys. Lett., 90, 263110, 10.1063/1.2752125

Colonna, 2013, Systematic STM and LEED investigation of the Si/Ag(110) surface, J. Phys.: Condens. Matter, 25, 315301

Ding, 2014, Electronic structures of reconstructed zigzag silicene NRs, Appl. Phys. Lett., 104, 083111, 10.1063/1.4866786

Atamny, 1999, On the STM imaging contrast of graphite: towards a “true” atomic resolution, Phys. Chem. Chem. Phys., 1, 4113, 10.1039/a904657g

De Padova, 2012, Multilayer silicene NRs, Nano Lett., 12, 5500, 10.1021/nl302598x

Ronci, 2014, Silicon-induced faceting at the Ag(110) surface, Phys. Rev. B, 89, 115437, 10.1103/PhysRevB.89.115437

Bernard, 2013, Growth of Si ultrathin films on silver surfaces: evidence of an Ag(110) reconstruction induced by Si, Phys. Rev. B, 88, 121411, 10.1103/PhysRevB.88.121411

De Padova, 2008, Growth of straight, atomically perfect, highly metallic silicon nanowires with chiral asymmetry, Nano Lett., 8, 271, 10.1021/nl072591y

De Padova, 2008, Burning match oxidation process of silicon nanowires screened at the atomic scale, Nano Lett., 8, 2299, 10.1021/nl800994s

He, 2006, Atomic structure of Si nanowires on Ag(110): a density-functional theory study, Phys. Rev. B, 73, 035311, 10.1103/PhysRevB.73.035311

Kresse, 1993, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47, 558, 10.1103/PhysRevB.47.558

Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169

Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0

Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953

Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758

Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188

Lian, 2012, The structural and electronic properties of silicon NRs on Ag(110): a first principles study, Phys. B Cond. Matter, 407, 4695, 10.1016/j.physb.2012.08.039

Repp, 2004, Controlling the charge state of individual gold adatoms, Science, 305, 493, 10.1126/science.1099557

Repp, 2005, Molecules on insulating films: scanning tunneling microscopy imaging of individual molecular orbitals, Phys. Rev. Lett., 94, 026803, 10.1103/PhysRevLett.94.026803

Le Lay, 2012, Epitaxial silicene: can it be strongly strained?, J. Phys. D Appl. Phys., 45, 392001, 10.1088/0022-3727/45/39/392001

Moras, 2014, Coexistence of multiple silicene phases in silicon grown on Ag(111), J. Phys.: Condens. Matter, 26, 185001

Acun, 2013, The instability of silicene on Ag(111), Appl. Phys. Lett., 103, 263119, 10.1063/1.4860964

Arafune, 2013, Structural transition of silicene on Ag(111), Surf. Sci., 608, 297, 10.1016/j.susc.2012.10.022

Gao, 2012, Initial geometries, interaction mechanism and high stability of silicene on Ag(111) surface, Sci. Rep., 2, 861, 10.1038/srep00861

Kawahara, 2014, Determination of atomic positions in silicone on Ag(111) by low energy electron diffraction, Surf. Sci., 623, 25, 10.1016/j.susc.2013.12.013

Chen, 2012, Evidence for Dirac fermions in a honeycomb lattice based on silicon, Phys. Rev. Lett., 109, 056804, 10.1103/PhysRevLett.109.056804

Arafune, 2013, Comment “evidence for Dirac fermions in a honeycomb lattice based on silicon”, Phys. Rev. Lett., 110, 229701, 10.1103/PhysRevLett.110.229701

Lin, 2013, Substrate-induced symmetry breaking in silicene, Phys. Rev. Lett., 110, 076801, 10.1103/PhysRevLett.110.076801

Wang, 2013, Absence of a Dirac cone in silicene on Ag(111): first-principles density functional calculations with a modified effective band structure technique, Phys. Rev. B, 87, 245430, 10.1103/PhysRevB.87.245430

Mahatha, 2014, Silicene on Ag(111): a honeycomb lattice without Dirac bands, Phys. Rev. B, 89, 201416, 10.1103/PhysRevB.89.201416

Vogt, 2014, Synthesis and electrical conductivity of multilayer silicone, Appl. Phys. Lett., 104, 021602, 10.1063/1.4861857

Shirai, 2014, Structure determination of multilayer silicene grown on Ag(111) films by electron diffraction: evidence for Ag segregation at the surface, Phys. Rev. B, 89, 241403, 10.1103/PhysRevB.89.241403

Mannix, 2014, Silicon growth at the two-dimensional limit on Ag(111), ACS Nano, 8, 7538, 10.1021/nn503000w

Takahashi, 1993, Refinement of the Si(111) 3×3-Ag structure by surface X-ray diffraction, Surf. Sci., 282, 17, 10.1016/0039-6028(93)90607-L

Aizawa, 1999, Asymmetric structure of the Si(111) 3×3-Ag surface, Surf. Sci., 429, L509, 10.1016/S0039-6028(99)00424-0

Liu, 2011, Quantum spin Hall effect in silicene and two-dimensional germanium, Phys. Rev. Lett., 107, 076801, 10.1103/PhysRevLett.107.076802

Gori, 2013, Origin of Dirac-cone-like features in silicon structures on Ag(111) and Ag(110), J. Appl. Phys., 114, 113710, 10.1063/1.4821339

Kokott, 2014, Nonmetallic substrates for growth of silicene: an ab initio prediction, J. Phys.: Condens. Matter, 26, 185002

Pan, 2014, Valley-polarized quantum anomalous Hall effect in silicene, Phys. Rev. Lett., 112, 106802, 10.1103/PhysRevLett.112.106802

Guo, 2014, Structural tristability and deep Dirac states in bilayer silicene on Ag(111) surfaces, Phys. Rev. B, 89, 155418, 10.1103/PhysRevB.89.155418

Quhe, 2014, Does the Dirac cone exist in silicene on metal substrates?, Sci. Rep., 4, 5476, 10.1038/srep05476

Kaltsas, 2014, Silicene on metal substrates: a first-principles study on the emergence of a hierarchy of honeycomb structures, Appl. Surf. Sci., 291, 93, 10.1016/j.apsusc.2013.09.115

Gao, 2014, Bandgap opening in silicene: effect of substrates, Chem. Phys. Lett., 592, 222, 10.1016/j.cplett.2013.12.036

Bhattacharya, 2013, Exploring semiconductor substrates for silicene epitaxy, Appl. Phys. Lett., 103, 123113, 10.1063/1.4821993

Pflugradt, 2014, Unexpected symmetry and AA stacking of bilayer silicene on Ag(111), Phys. Rev. B, 26, 185002

Scalise, 2014, Vibrational properties of epitaxial silicene layers on (111) Ag, Appl. Surf. Sci., 291, 113, 10.1016/j.apsusc.2013.08.113

Shu, 2014, Two-dimensional silicene nucleation on a Ag(111) surface: structural evolution and the role of surface diffusion, Phys. Chem. Chem. Phys., 16, 304, 10.1039/C3CP53933D

Stephan, 2015, Spatial analysis of interactions at the silicone/Ag interface: first principles study, J. Phys. Cond. Matter, 27, 015002, 10.1088/0953-8984/27/1/015002

Tersoff, 1985, Theory of the scanning tunneling microscope, Phys. Rev. B, 31, 805, 10.1103/PhysRevB.31.805

Okamoto, 1983, The Au−Si (Gold–Silicon) system, Bull. Alloy Phase Diagram, 4, 190, 10.1007/BF02884878

Enriquez, 2012, Adsorption of silicon on Au(110): an ordered 2D surface alloy, Appl. Phys. Lett., 101, 021605, 10.1063/1.4735310

Yang, 2010, Quantum interference channeling at graphene edges, Nano Lett., 10, 943, 10.1021/nl9038778

Park, 2011, Formation of unconventional standing waves at graphene edges by valley mixing and pseudospin rotation, Proc. Natl. Acad. Soc. U.S.A., 108, 18622, 10.1073/pnas.1114548108

Simon, 2009, Symmetry of standing waves generated by a point defect in epitaxial graphene, Eur. Phys. J. B, 69, 351, 10.1140/epjb/e2009-00142-3

Brihuega, 2008, Quasiparticle chirality in epitaxial graphene probed at the nanometer scale, Phys. Rev. Lett., 101, 206802, 10.1103/PhysRevLett.101.206802

Saari, 2014, Electrically tunable localized tunneling channels in silicene NRs, Appl. Phys. Lett., 104, 173104, 10.1063/1.4873716

Becke, 1990, A simple measure of electron localization in atomic and molecular systems, J. Chem. Phys., 92, 5397, 10.1063/1.458517

Savin, 1992, Electron localization in solid-state structures of the elements: the diamond structure, Angew. Chem. Int. Ed. Eng., 31, 187, 10.1002/anie.199201871

Gao, 2011, Epitaxial growth and structural property of graphene on Pt(111), Appl. Phys. Lett., 98, 033101, 10.1063/1.3543624

Li, 2013, Two-dimensional transition metal honeycomb realized: Hf on Ir(111), Nano Lett., 13, 4671, 10.1021/nl4019287

Pan, 2014, Construction of 2D atomic crystals on transition metal surfaces: graphene, silicene, and hafnene, Small, 10, 2215, 10.1002/smll.201303698

Sahin, 2013, Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene, Phys. Rev. B, 87, 085423, 10.1103/PhysRevB.87.085423

Ni, 2014, Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors, Nanoscale, 6, 7609, 10.1039/C4NR00028E

Diebold, 1996, Surface segregation of silicon in platinum(111), J. Vac. Sci. Technol., A, 14, 1679, 10.1116/1.580318

Nashner, 1998, Chemisorption properties and structural evolution of Pt−Si intermetallic thin films prepared by the activated adsorption of SiH4 on Pt(111), J. Phys. Chem. B, 102, 6202, 10.1021/jp981398c

Švec, 2014, Silicene versus two-dimensional ordered silicide: atomic and electronic structure of Si (√19×√19)R23.4/Pt(111), Phys. Rev. B, 89, 201412, 10.1103/PhysRevB.89.201412

Yamada-Takamura, 2010, Surface electronic structure of ZrB2 buffer layers for GaN growth on Si wafers, Appl. Phys. Lett., 97, 073109, 10.1063/1.3481414

Fleurence, 2014, Microscopic origin of the states in epitaxial silicene, Appl. Phys. Lett., 104, 021605, 10.1063/1.4862261

Friedlein, 2014, Core level excitations—a fingerprint of structural and electronic properties of epitaxial silicene, J. Chem. Phys., 140, 184704, 10.1063/1.4875075

Friedlein, 2013, Tuning of silicene–substrate interactions with potassium adsorption, Appl. Phys. Lett., 102, 221603, 10.1063/1.4808214

Lee, 2013, First-principles study on competing phases of silicene: effect of substrate and strain, Phys. Rev. B, 88, 165404, 10.1103/PhysRevB.88.165404

Lu, 2004, Thermal stability of LaAlO3/Si deposited by laser molecular-beam epitaxy, Appl. Phys. Lett., 84, 2620, 10.1063/1.1690880

Mortada, 2011, Epitaxy of Si nanocrystals by molecular beam epitaxy on a crystalline insulator LaAlO3(001), J. Crystal Growth, 323, 247, 10.1016/j.jcrysgro.2010.10.007

Ben Azzouz, 2014, Two dimensional Si layer epitaxied on LaAlO3(111) substrate: RHEED and XPS investigations, J. Phys: Conf. Ser., 491, 012009

Jinesh, 2008, Silicon out-diffusion and aluminum in-diffusion in devices with atomic-layer deposited La2O3 thin films, Appl. Phys. Lett., 93, 192912, 10.1063/1.3025850

Sasaki, 1996, Macromolecule like aspect for colloidal suspension of nanosheets and dynamic reassembling process initiated from it, J. Am. Chem. Soc., 118, 8329, 10.1021/ja960073b

Omomo, 2003, Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide, J. Am. Chem. Soc., 125, 3568, 10.1021/ja021364p

Miyamoto, 2002, Formation of extraordinarily large nanosheets from K4Nb6O7 crystals, Chem. Commun., 2378, 10.1039/b206998a

Yang, 1991, Structure of single-molecular-layer MoS2, Phys. Rev. B, 43, 12053, 10.1103/PhysRevB.43.12053

Alberti, 2000, Formation of aqueous colloidal dispersions of exfoliated gamma-zirconium phosphate by intercalation of short alkylamines, Langmuir, 16, 7663, 10.1021/la0006061

Ait Ali, 2014, Chemical synthesis of silicon nanosheets from layered calcium disilicide, J. Phys: Conf. Ser., 491, 012009

Kauzlarich, 1996

Schäfer, 1985, On the problem of polar intermetallic compounds: the stimulation of E. Zintl’s work for the modern chemistry of intermetallics, Annu. Rev. Mater. Sci., 15, 141, 10.1146/annurev.ms.15.080185.000245

Gärtner, 2011, vol. 140, S. 25

Schäfer, 1973, Zintl phases: transitions between metallic and ionic bonding, Angew. Chem. Int. Ed. Engl., 12, 694, 10.1002/anie.197306941

Böhm, 1927, Die kristallstruktur des calcium silicides CaSi2, Z. Anorg. Allg. Chem., 160, 152, 10.1002/zaac.19271600115

Wallbaum, 1944, Ueber intermetallischen Germaniumverbindungen, Naturwissenschaften, 32, 76, 10.1007/BF01468012

Weiss, 1979, The topochemical reaction of CaSi2 to a two-dimensional subsiliceous acid Si6H3(OH)3, Naturforschung, 35b, 25

Bonitz, 1961, Lepidoide VI: ein neuer weg zur herstellung von aktivem silicium oder siliciummonochlorid, Chem. Ber., 94, 220, 10.1002/cber.19610940133

Kautsky, 1952, Probleme der siliciumchemie – zweidimensionale kristallstrukturen, Z. Naturforsch., 7b, 174, 10.1515/znb-1952-0307

Bonitz, 1966, Reactions of elementary silicon, Angew. Chem. Int. Ed. Engl., 5, 462, 10.1002/anie.196604621

Brandt, 2003, 194

Hengge, 1967, Siloxen und schichtformig gebaute siliciumverbindungen, Fortschr. Chem. Forsch., 9, 145, 10.1007/BFb0051672

Dettlaff-Weglikowska, 1997, Structure and optical properties of the planar silicon compounds polysilane and Wöhler siloxene, Phys. Rev. B, 56, 13132, 10.1103/PhysRevB.56.13132

Sugiyama, 2010, Synthesis of siloxene derivatives with organic groups, Chem. Lett., 39, 938, 10.1246/cl.2010.938

Dahn, 1993, Structure of siloxene and layered polysilane (Si6H6), Phys. Rev. B, 48, 17872, 10.1103/PhysRevB.48.17872

Nakano, 2005, Preparation and structure of novel siloxene nanosheets, Chem. Commun., 2945, 10.1039/b500758e

Yamanaka, 1996, New deintercalation reaction of. calcium from calcium disilicide. Synthesis of layered polysilane, Mater. Res. Bull., 31, 307, 10.1016/0025-5408(95)00195-6

Nishimura, 1996, Characterization of layered polysilane, Jpn. J. Appl. Phys., 35, L293, 10.1143/JJAP.35.L293

Nakano, 2012, Preparation of alkyl-modified silicon nanosheets by hydrosilylation of layered polysilane (Si6H6), J. Am. Chem. Soc., 134, 5452, 10.1021/ja212086n

Sugiyama, 2010, Synthesis and optical properties of monolayer organosilicon nanosheets, J. Am. Chem. Soc., 132, 5946, 10.1021/ja100919d

Waltenburg, 1995, Surface chemistry of silicon, Chem. Rev., 95, 1589, 10.1021/cr00037a600

Bergerson, 1999, Assembly of organic molecules on silicon surfaces via the Si–N linkages, J. Am. Chem. Soc., 121, 454, 10.1021/ja9832966

Rogozhina, 2001, Si–N linkage in ultrabright, ultrasmall Si nanoparticles, Appl. Phys. Lett., 78, 3711, 10.1063/1.1377619

Liao, 2006, Self-assembly of organic monolayers on aerosolized silicon nanoparticles, J. Am. Chem. Soc., 128, 9061, 10.1021/ja0611238

Okamoto, 2010, Silicon nanosheets and their self-assembled regular stacking structure, J. Am. Chem. Soc., 132, 2710, 10.1021/ja908827z

Socrates, 2001

Armand, 2008, Building better batteries, Nature, 451, 652, 10.1038/451652a

Whittingham, 2008, Materials challenges facing electrical energy storage, MRS Bull., 33, 411, 10.1557/mrs2008.82

Jeong, 2011, Prospective materials and applications for Li secondary batteries, Energy Environ. Sci., 4, 1986, 10.1039/c0ee00831a

Kasavajjula, 2007, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, J. Power Sources, 163, 1003, 10.1016/j.jpowsour.2006.09.084

Chan, 2008, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotech., 3, 31, 10.1038/nnano.2007.411

Zhao, 2012, Reactive flow in silicon electrodes assisted by the insertion of lithium, Nano Lett., 12, 4397, 10.1021/nl302261w

Zhang, 2011, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 196, 13, 10.1016/j.jpowsour.2010.07.020

Wen, 1981, Chemical diffusion in intermediate phases in the lithium–silicon system, J. Solid State Chem., 37, 271, 10.1016/0022-4596(81)90487-4

Beaulieu, 2003, Reaction of Li with alloy thin films studied by in situ AFM, J. Electrochem. Soc., 150, A1457, 10.1149/1.1613668

Park, 2009, Silicon nanotube battery anodes, Nano Lett., 9, 3844, 10.1021/nl902058c

Chan, 2010, Controlling diffusion of lithium in silicon nanostructures, Nano Lett., 10, 821, 10.1021/nl903183n

Wu, 2012, Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control, Nat. Nanotech., 7, 310, 10.1038/nnano.2012.35

Zhao, 2011, Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge, J. Am. Ceram. Soc., 94, s226, 10.1111/j.1551-2916.2011.04432.x

Wu, 2012, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 7, 414, 10.1016/j.nantod.2012.08.004

Coleman, 2011, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, 331, 568, 10.1126/science.1194975

Lee, 2010, Silicon nanoparticles–graphene paper composites for Li ion battery anodes, Chem. Commun., 46, 2025, 10.1039/b919738a

Allen, 2010, Honeycomb carbon: a review of graphene, Chem. Rev., 110, 132, 10.1021/cr900070d

Kaskhedikar, 2009, Lithium storage in carbon nanostructures, Adv. Mater., 21, 2664, 10.1002/adma.200901079

Yoo, 2008, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Lett., 8, 2277, 10.1021/nl800957b

Wang, 2010, Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires, ACS Appl. Mater. Interfaces, 2, 3709, 10.1021/am100857h

Zhou, 2013, Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries, ACS Appl. Mater. Interfaces, 5, 3449, 10.1021/am400521n

Wu, 2014, Three-dimensional interconnected network of graphene-wrapped porous silicon spheres: in situ magnesiothermic-reduction synthesis and enhanced lithium-storage capabilities, ACS Appl. Mater. Interfaces, 6, 3546, 10.1021/am405725u

Xu, 2013, Graphene-based electrodes for electrochemical energy storage, Energy Environ. Sci., 6, 1388, 10.1039/c3ee23870a

Takeda, 1994, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite, Phys. Rev. B, 50, 14916, 10.1103/PhysRevB.50.14916

Wang, 2000, Theoretical investigations of bond properties in graphite and graphitic silicon, Phys. Rev. B, 61, 12864, 10.1103/PhysRevB.61.12864

Zhang, 2011, Anisotropic lithium insertion behavior in silicon nanowires: binding energy, diffusion barrier, and strain effect, J. Phys. Chem. C, 115, 9376, 10.1021/jp1115977

Cubuk, 2013, Morphological evolution of Si nanowires upon lithiation: a first-principles multiscale model, Nano Lett., 13, 2011, 10.1021/nl400132q

Osborn, 2012, Stability of lithiated silicene from first principles, J. Phys. Chem. C, 116, 22916, 10.1021/jp306889x

Drummond, 2012, Electrically tunable band gap in silicene, Phys. Rev. B, 85, 075423, 10.1103/PhysRevB.85.075423

Lin, 2012, Much stronger binding of metal adatoms to silicene than to graphene: a first-principles study, Phys. Rev. B, 86, 075440, 10.1103/PhysRevB.86.075440

Tritsaris, 2013, Adsorption and diffusion of lithium on layered silicon for Li-ion storage, Nano Lett., 13, 2258, 10.1021/nl400830u

Yang, 2009, A metallic graphene layer adsorbed with lithium, Appl. Phys. Lett., 94, 163115, 10.1063/1.3126008

Zhao, 2011, Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study, Nano Lett., 11, 2962, 10.1021/nl201501s

Sethuraman, 2010, In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation, J. Power Sources, 195, 5062, 10.1016/j.jpowsour.2010.02.013

Zhang, 2010, Lithium insertion in silicon nanowires: an ab initio study, Nano Lett., 10, 3243, 10.1021/nl904132v

Fiori, 2014, Electronics based on two-dimensional materials, Nat. Nanotech., 9, 768, 10.1038/nnano.2014.207

Han, 2014, Graphene spintronics, Nat. Nanotech., 9, 794, 10.1038/nnano.2014.214

Ezawa, 2014, Electrically tunable conductance and edge modes in topological crystalline insulator thin films: minimal tight-binding model analysis, New J. Phys., 16, 065015, 10.1088/1367-2630/16/6/065015

Lin, 2014, Tailoring of the structural, energetic and electronic properties of silicene-based nanostructures, J. Phys: Conf. Ser., 491, 012005

Zberecki, 2013, Thermoelectric effects in silicene NRs, Phys. Rev. B, 88, 115404, 10.1103/PhysRevB.88.115404

Fang, 2013, Tuning the electronic and magnetic properties of zigzag silicene NRs by edge hydrogenation and doping, RSC Adv., 3, 24075, 10.1039/c3ra42720j

Tsai, 2013, Nat. Commun., 4, 1500, 10.1038/ncomms2525

Yang, 2012, Science, 336, 1140, 10.1126/science.1220527

Mayne, 2006, Atomic-scale studies of hydrogenated semiconductor surfaces, Prog. Surf. Sci., 81, 1, 10.1016/j.progsurf.2006.01.001

Leftwich, 2008, Adsorption of molecules on silicon surfaces, Surf. Sci. Rep., 63, 1

Tang, 2013, Graphene-related nanomaterials: tuning properties by functionalization, Nanoscale, 5, 4541, 10.1039/c3nr33218g

Zhou, 2014, Graphene’s cousin: the present and future of graphane, Nanoscale Res. Lett., 9, 26, 10.1186/1556-276X-9-26

Boland, 1993, Scanning tunnelling microscopy studies of the interaction of hydrogen with silicon surfaces, Adv. Phys., 42, 129, 10.1080/00018739300101474

Bellec, 2009, Imaging molecular orbitals by scanning tunneling microscopy on a passivated semiconductor, Nano Lett., 9, 144, 10.1021/nl802688g

Shen, 1995, Atomic-scale desorption through electronic and vibrational excitation mechanisms, Science, 268, 1590, 10.1126/science.268.5217.1590

Soukiassian, 2003, Atomic scale desorption of H atoms from the Si(100)-(2×1): H surface: are so many electrons really necessary?, Phys. Rev. B, 68, 035303, 10.1103/PhysRevB.68.035303

Soukiassian, 2003, Atomic wire fabrication by STM-induced hydrogen desorption, Surf. Sci., 528, 121, 10.1016/S0039-6028(02)02620-1

Mayne, 2004, Molecular molds, Appl. Phys. Lett., 85, 5379, 10.1063/1.1829163

Eda, 2010, Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics, Adv. Mater., 22, 2392, 10.1002/adma.200903689

Zhu, 2010, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22, 3906, 10.1002/adma.201001068

Pelz, 1991, Successive oxidation stages and annealing behavior of the Si(111) 7×7 surface observed with scanning tunneling microscopy and scanning tunneling spectroscopy, J. Vac. Sci. Technol., B, 9, 775, 10.1116/1.585509

Dujardin, 1996, A new model for the adsorption of O2 on Si(111)-(7×7) studied by STM, Phys. Rev. Lett., 76, 3782, 10.1103/PhysRevLett.76.3782

Mayne, 2003, Variable temperature STM studies of the adsorption of oxygen on the Si(111)-7×7 surface, Surf. Sci., 528, 132, 10.1016/S0039-6028(02)02622-5

Hemeryck, 2007, Difficulty for oxygen to incorporate into the silicon network during initial oxidation, J. Chem. Phys., 126, 114707, 10.1063/1.2566299

De Padova, 2013, Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons, J. Phys.: Condens. Matter, 25, 014009

Premlal, 2009, Surface intercalation of gold underneath a graphene monolayer on SiC(0001) studied by scanning tunneling microscopy and spectroscopy, Appl. Phys. Lett., 94, 263115, 10.1063/1.3168502

Vlaic, 2014, Cobalt intercalation at the graphene/iridium(111) interface: influence of rotational domains, wrinkles, and atomic steps, Appl. Phys. Lett., 104, 101602, 10.1063/1.4868119

Salomon, 2008, One-dimensional organic nanostructures: a novel approach based on the selective adsorption of organic molecules on silicon nanowires, Surf. Sci., 602, L79, 10.1016/j.susc.2008.04.023

Papageorgiou, 2003, Self-assembled molecular chains formed by selective adsorption of Pb-phthalocyanine on InSb(100)-4×2-c(8×2), Appl. Phys. Lett., 82, 2518, 10.1063/1.1566802

Baffou, 2007, Anchoring phthalocyanine molecules on the 6H-SiC(0001)-3×3 surface, Appl. Phys. Lett., 91, 073101, 10.1063/1.2769761

Wang, 2009, Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene, Nat. Chem., 1, 200, 10.1038/nchem.212

Yang, 2013, STM spectroscopy & manipulation of a self-assembled PTCDI layer on epitaxial graphene, Phys. Chem. Chem. Phys., 15, 4939, 10.1039/c3cp42591f

Duong, 2012, Band-gap engineering in chemically conjugated bilayer graphene: ab initio calculations, Phys. Rev. B, 85, 205413, 10.1103/PhysRevB.85.205413

Bechstedt, 2012, Infrared absorbance of silicene and germanene, Appl. Phys. Lett., 100, 261906, 10.1063/1.4731626

K. Chinnathambi, A. Chakrabarti, A. Banerjee, S.K. Deb, Optical Properties of Graphene-like Two Dimensional Silicene, arXiv:1205.5099v1.

Matthes, 2014, Optical properties of two-dimensional honeycomb crystals graphene, silicene, germanene, and tinene from first principles, New J. Phys., 16, 105007, 10.1088/1367-2630/16/10/105007

Tabert, 2013, Valley–spin polarization in the magneto-optical response of silicene and other similar 2D crystals, Phys. Rev. Lett., 110, 197402, 10.1103/PhysRevLett.110.197402

Lew Yan Voon, 2014, Is silicene the new graphene?, MRS Bull., 39, 366, 10.1557/mrs.2014.60