Silicene, a promising new 2D material
Tóm tắt
Từ khóa
Tài liệu tham khảo
Novoselov, 2004, Electric field effect in atomically thin carbon film, Science, 306, 666, 10.1126/science.1102896
Berger, 2006, Electronic confinement and coherence in patterned epitaxial graphene, Science, 312, 1191, 10.1126/science.1125925
Castro Neto, 2009, The electronic properties of graphene, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109
Guzmán-Verri, 2007, Electronic structure of silicon-based nanostructures, Phys. Rev. B, 76, 075131, 10.1103/PhysRevB.76.075131
Cahangirov, 2009, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett., 102, 236804, 10.1103/PhysRevLett.102.236804
Kara, 2012, A review on silicene – new candidate for electronics, Surf. Sci. Rep., 67, 1, 10.1016/j.surfrep.2011.10.001
Lebègue, 2009, Electronic structure of two-dimensional crystals from ab initio theory, Phys. Rev. B, 79, 115409, 10.1103/PhysRevB.79.115409
Liu, 2011, Quantum spin Hall effect in silicene and two-dimensional Germanium, Phys. Rev. Lett., 107, 076802, 10.1103/PhysRevLett.107.076802
Rachel, 2014, Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene, Phys. Rev. B, 89, 195303, 10.1103/PhysRevB.89.195303
Ezawa, 2013, Spin valleytronics in silicene: quantum spin hall–quantum anomalous hall insulators and single-valley semimetals, Phys. Rev. B, 87, 155415, 10.1103/PhysRevB.87.155415
Sahin, 2013, Stone-wales defects in silicene: formation, stability, and reactivity of defect sites, Phys. Rev. B, 87, 085444
Yamakage, 2013, Charge transport in pn and npn junctions of silicene, Phys. Rev. B, 88, 085322, 10.1103/PhysRevB.88.085322
Sivek, 2013, Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene: stability and electronic and phonon properties, Phys. Rev. B, 87, 085444, 10.1103/PhysRevB.87.085444
Oughaddou, 1999, Growth mode and dissolution kinetics of germanium thin films on a Ag(001) surface: an AES-LEED investigation, Surf. Sci., 429, 320, 10.1016/S0039-6028(99)00394-5
Oughaddou, 2000, Ge/Ag(111) semiconductor-on-metal growth: formation of an Ag2Ge surface alloy, Phys. Rev. B, 62, 16653, 10.1103/PhysRevB.62.16653
Oughaddou, 2000, Ge tetramer structure of the p(2√2×4√2)R45 surface reconstruction of Ge/Ag(001): a surface X-ray diffraction and STM study, Phys. Rev. B., 61, 5692, 10.1103/PhysRevB.61.5692
Léandri, 2004, Self-assembled germanium nanoclusters on silver (110), Surf. Sci., 573, L369, 10.1016/j.susc.2004.10.005
Aufray, 2010, Graphene-like silicon NRs on Ag 110: a possible formation of silicene, Appl. Phys. Lett., 96, 183102, 10.1063/1.3419932
Enriquez, 2012, Silicene structures on silver surfaces, J. Phys.: Condens. Matter, 24, 314211
Tchalala, 2014, Atomic structure of silicene NRs on Ag(110), J. Phys: Conf. Ser., 491, 012002
Lin, 2012, Structure of silicene grown on Ag(111), Appl. Phys. Expr., 5, 45802, 10.1143/APEX.5.045802
Vogt, 2012, Silicene: compelling experimental evidence for graphene like two-dimensional silicon, Phys. Rev. Lett., 108, 155501, 10.1103/PhysRevLett.108.155501
Jamgotchian, 2012, Growth of silicene layers on Ag(111): unexpected effect of the substrate temperature, J. Phys.: Condens. Matter, 24, 172001
Feng, 2012, Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett., 12, 3507, 10.1021/nl301047g
Chiappe, 2012, Local electronic properties of corrugated silicene phases, Adv. Mater., 24, 5088, 10.1002/adma.201202100
Jamgotchian, 2014, Silicene on Ag(111): domains and local defects of the observed superstructures, J. Phys: Conf. Ser., 491, 012001
Enriquez, 2014, Atomic structure of the (2√3×2√3)R30 of silicene on Ag(111) surface, J. Phys: Conf. Ser., 491, 012004
Tchalala, 2014, Atomic and electronic structures of the (√13×√13)R13.9 of silicene sheet on Ag(111), Appl. Surf. Sci., 303, 61, 10.1016/j.apsusc.2014.02.064
Majzik, 2013, Combined AFM and STM measurements of a silicene sheet grown on the Ag(111) surface, J. Phys.: Condens. Matter, 25, 225301
Fleurence, 2012, Experimental evidence for epitaxial silicene on diboride thin films, Phys. Rev. Lett., 108, 245501, 10.1103/PhysRevLett.108.245501
Tchalala, 2013, Formation of one-dimensional self-assembled silicon NRs on Au(110)-(2×1), Appl. Phys. Lett., 102, 083107, 10.1063/1.4793536
Tchalala, 2013, J. Phys.: Condens. Matter, 25, 442001
Léandri, 2005, Self-aligned silicon quantum wires on Ag(110), Surf. Sci., 574, 9, 10.1016/j.susc.2004.10.052
Le Lay, 2009, Physics and chemistry of silicene nano-ribbons, Appl. Surf. Sci., 256, 524, 10.1016/j.apsusc.2009.07.114
Kara, 2009, Physics of silicene stripes, J. Supercond. Nov. Magn., 22, 259, 10.1007/s10948-008-0427-8
Kara, 2010, Silicon nano-ribbons on Ag(110): a computational investigation, J. Phys.: Condens. Matter, 22, 045004
Ronci, 2010, STM/STS study of silicon NW grown on the Ag(110) surface, Phys. Status Solidi C, 7, 2716, 10.1002/pssc.200983839
De Padova, 2010, Evidence of graphene-like electronic signature in silicene NRs, Appl. Phys. Lett., 96, 261905, 10.1063/1.3459143
De Padova, 2012, 1D graphene-like silicon systems: silicene nano-ribbons, J. Phys.: Condens. Matter, 24, 223001
Sahaf, 2007, Formation of a one-dimensional grating at the molecular scale by self-assembly of straight silicon nanowires, Appl. Phys. Lett., 90, 263110, 10.1063/1.2752125
Colonna, 2013, Systematic STM and LEED investigation of the Si/Ag(110) surface, J. Phys.: Condens. Matter, 25, 315301
Ding, 2014, Electronic structures of reconstructed zigzag silicene NRs, Appl. Phys. Lett., 104, 083111, 10.1063/1.4866786
Atamny, 1999, On the STM imaging contrast of graphite: towards a “true” atomic resolution, Phys. Chem. Chem. Phys., 1, 4113, 10.1039/a904657g
Ronci, 2014, Silicon-induced faceting at the Ag(110) surface, Phys. Rev. B, 89, 115437, 10.1103/PhysRevB.89.115437
Bernard, 2013, Growth of Si ultrathin films on silver surfaces: evidence of an Ag(110) reconstruction induced by Si, Phys. Rev. B, 88, 121411, 10.1103/PhysRevB.88.121411
De Padova, 2008, Growth of straight, atomically perfect, highly metallic silicon nanowires with chiral asymmetry, Nano Lett., 8, 271, 10.1021/nl072591y
De Padova, 2008, Burning match oxidation process of silicon nanowires screened at the atomic scale, Nano Lett., 8, 2299, 10.1021/nl800994s
He, 2006, Atomic structure of Si nanowires on Ag(110): a density-functional theory study, Phys. Rev. B, 73, 035311, 10.1103/PhysRevB.73.035311
Kresse, 1993, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47, 558, 10.1103/PhysRevB.47.558
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758
Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188
Lian, 2012, The structural and electronic properties of silicon NRs on Ag(110): a first principles study, Phys. B Cond. Matter, 407, 4695, 10.1016/j.physb.2012.08.039
Repp, 2004, Controlling the charge state of individual gold adatoms, Science, 305, 493, 10.1126/science.1099557
Repp, 2005, Molecules on insulating films: scanning tunneling microscopy imaging of individual molecular orbitals, Phys. Rev. Lett., 94, 026803, 10.1103/PhysRevLett.94.026803
Le Lay, 2012, Epitaxial silicene: can it be strongly strained?, J. Phys. D Appl. Phys., 45, 392001, 10.1088/0022-3727/45/39/392001
Moras, 2014, Coexistence of multiple silicene phases in silicon grown on Ag(111), J. Phys.: Condens. Matter, 26, 185001
Acun, 2013, The instability of silicene on Ag(111), Appl. Phys. Lett., 103, 263119, 10.1063/1.4860964
Arafune, 2013, Structural transition of silicene on Ag(111), Surf. Sci., 608, 297, 10.1016/j.susc.2012.10.022
Gao, 2012, Initial geometries, interaction mechanism and high stability of silicene on Ag(111) surface, Sci. Rep., 2, 861, 10.1038/srep00861
Kawahara, 2014, Determination of atomic positions in silicone on Ag(111) by low energy electron diffraction, Surf. Sci., 623, 25, 10.1016/j.susc.2013.12.013
Chen, 2012, Evidence for Dirac fermions in a honeycomb lattice based on silicon, Phys. Rev. Lett., 109, 056804, 10.1103/PhysRevLett.109.056804
Arafune, 2013, Comment “evidence for Dirac fermions in a honeycomb lattice based on silicon”, Phys. Rev. Lett., 110, 229701, 10.1103/PhysRevLett.110.229701
Lin, 2013, Substrate-induced symmetry breaking in silicene, Phys. Rev. Lett., 110, 076801, 10.1103/PhysRevLett.110.076801
Wang, 2013, Absence of a Dirac cone in silicene on Ag(111): first-principles density functional calculations with a modified effective band structure technique, Phys. Rev. B, 87, 245430, 10.1103/PhysRevB.87.245430
Mahatha, 2014, Silicene on Ag(111): a honeycomb lattice without Dirac bands, Phys. Rev. B, 89, 201416, 10.1103/PhysRevB.89.201416
Vogt, 2014, Synthesis and electrical conductivity of multilayer silicone, Appl. Phys. Lett., 104, 021602, 10.1063/1.4861857
Shirai, 2014, Structure determination of multilayer silicene grown on Ag(111) films by electron diffraction: evidence for Ag segregation at the surface, Phys. Rev. B, 89, 241403, 10.1103/PhysRevB.89.241403
Mannix, 2014, Silicon growth at the two-dimensional limit on Ag(111), ACS Nano, 8, 7538, 10.1021/nn503000w
Takahashi, 1993, Refinement of the Si(111) 3×3-Ag structure by surface X-ray diffraction, Surf. Sci., 282, 17, 10.1016/0039-6028(93)90607-L
Aizawa, 1999, Asymmetric structure of the Si(111) 3×3-Ag surface, Surf. Sci., 429, L509, 10.1016/S0039-6028(99)00424-0
Liu, 2011, Quantum spin Hall effect in silicene and two-dimensional germanium, Phys. Rev. Lett., 107, 076801, 10.1103/PhysRevLett.107.076802
Gori, 2013, Origin of Dirac-cone-like features in silicon structures on Ag(111) and Ag(110), J. Appl. Phys., 114, 113710, 10.1063/1.4821339
Kokott, 2014, Nonmetallic substrates for growth of silicene: an ab initio prediction, J. Phys.: Condens. Matter, 26, 185002
Pan, 2014, Valley-polarized quantum anomalous Hall effect in silicene, Phys. Rev. Lett., 112, 106802, 10.1103/PhysRevLett.112.106802
Guo, 2014, Structural tristability and deep Dirac states in bilayer silicene on Ag(111) surfaces, Phys. Rev. B, 89, 155418, 10.1103/PhysRevB.89.155418
Quhe, 2014, Does the Dirac cone exist in silicene on metal substrates?, Sci. Rep., 4, 5476, 10.1038/srep05476
Kaltsas, 2014, Silicene on metal substrates: a first-principles study on the emergence of a hierarchy of honeycomb structures, Appl. Surf. Sci., 291, 93, 10.1016/j.apsusc.2013.09.115
Gao, 2014, Bandgap opening in silicene: effect of substrates, Chem. Phys. Lett., 592, 222, 10.1016/j.cplett.2013.12.036
Bhattacharya, 2013, Exploring semiconductor substrates for silicene epitaxy, Appl. Phys. Lett., 103, 123113, 10.1063/1.4821993
Pflugradt, 2014, Unexpected symmetry and AA stacking of bilayer silicene on Ag(111), Phys. Rev. B, 26, 185002
Scalise, 2014, Vibrational properties of epitaxial silicene layers on (111) Ag, Appl. Surf. Sci., 291, 113, 10.1016/j.apsusc.2013.08.113
Shu, 2014, Two-dimensional silicene nucleation on a Ag(111) surface: structural evolution and the role of surface diffusion, Phys. Chem. Chem. Phys., 16, 304, 10.1039/C3CP53933D
Stephan, 2015, Spatial analysis of interactions at the silicone/Ag interface: first principles study, J. Phys. Cond. Matter, 27, 015002, 10.1088/0953-8984/27/1/015002
Tersoff, 1985, Theory of the scanning tunneling microscope, Phys. Rev. B, 31, 805, 10.1103/PhysRevB.31.805
Okamoto, 1983, The Au−Si (Gold–Silicon) system, Bull. Alloy Phase Diagram, 4, 190, 10.1007/BF02884878
Enriquez, 2012, Adsorption of silicon on Au(110): an ordered 2D surface alloy, Appl. Phys. Lett., 101, 021605, 10.1063/1.4735310
Yang, 2010, Quantum interference channeling at graphene edges, Nano Lett., 10, 943, 10.1021/nl9038778
Park, 2011, Formation of unconventional standing waves at graphene edges by valley mixing and pseudospin rotation, Proc. Natl. Acad. Soc. U.S.A., 108, 18622, 10.1073/pnas.1114548108
Simon, 2009, Symmetry of standing waves generated by a point defect in epitaxial graphene, Eur. Phys. J. B, 69, 351, 10.1140/epjb/e2009-00142-3
Brihuega, 2008, Quasiparticle chirality in epitaxial graphene probed at the nanometer scale, Phys. Rev. Lett., 101, 206802, 10.1103/PhysRevLett.101.206802
Saari, 2014, Electrically tunable localized tunneling channels in silicene NRs, Appl. Phys. Lett., 104, 173104, 10.1063/1.4873716
Becke, 1990, A simple measure of electron localization in atomic and molecular systems, J. Chem. Phys., 92, 5397, 10.1063/1.458517
Savin, 1992, Electron localization in solid-state structures of the elements: the diamond structure, Angew. Chem. Int. Ed. Eng., 31, 187, 10.1002/anie.199201871
Gao, 2011, Epitaxial growth and structural property of graphene on Pt(111), Appl. Phys. Lett., 98, 033101, 10.1063/1.3543624
Li, 2013, Two-dimensional transition metal honeycomb realized: Hf on Ir(111), Nano Lett., 13, 4671, 10.1021/nl4019287
Pan, 2014, Construction of 2D atomic crystals on transition metal surfaces: graphene, silicene, and hafnene, Small, 10, 2215, 10.1002/smll.201303698
Sahin, 2013, Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene, Phys. Rev. B, 87, 085423, 10.1103/PhysRevB.87.085423
Ni, 2014, Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors, Nanoscale, 6, 7609, 10.1039/C4NR00028E
Diebold, 1996, Surface segregation of silicon in platinum(111), J. Vac. Sci. Technol., A, 14, 1679, 10.1116/1.580318
Nashner, 1998, Chemisorption properties and structural evolution of Pt−Si intermetallic thin films prepared by the activated adsorption of SiH4 on Pt(111), J. Phys. Chem. B, 102, 6202, 10.1021/jp981398c
Švec, 2014, Silicene versus two-dimensional ordered silicide: atomic and electronic structure of Si (√19×√19)R23.4/Pt(111), Phys. Rev. B, 89, 201412, 10.1103/PhysRevB.89.201412
Yamada-Takamura, 2010, Surface electronic structure of ZrB2 buffer layers for GaN growth on Si wafers, Appl. Phys. Lett., 97, 073109, 10.1063/1.3481414
Fleurence, 2014, Microscopic origin of the states in epitaxial silicene, Appl. Phys. Lett., 104, 021605, 10.1063/1.4862261
Friedlein, 2014, Core level excitations—a fingerprint of structural and electronic properties of epitaxial silicene, J. Chem. Phys., 140, 184704, 10.1063/1.4875075
Friedlein, 2013, Tuning of silicene–substrate interactions with potassium adsorption, Appl. Phys. Lett., 102, 221603, 10.1063/1.4808214
Lee, 2013, First-principles study on competing phases of silicene: effect of substrate and strain, Phys. Rev. B, 88, 165404, 10.1103/PhysRevB.88.165404
Lu, 2004, Thermal stability of LaAlO3/Si deposited by laser molecular-beam epitaxy, Appl. Phys. Lett., 84, 2620, 10.1063/1.1690880
Mortada, 2011, Epitaxy of Si nanocrystals by molecular beam epitaxy on a crystalline insulator LaAlO3(001), J. Crystal Growth, 323, 247, 10.1016/j.jcrysgro.2010.10.007
Ben Azzouz, 2014, Two dimensional Si layer epitaxied on LaAlO3(111) substrate: RHEED and XPS investigations, J. Phys: Conf. Ser., 491, 012009
Jinesh, 2008, Silicon out-diffusion and aluminum in-diffusion in devices with atomic-layer deposited La2O3 thin films, Appl. Phys. Lett., 93, 192912, 10.1063/1.3025850
Sasaki, 1996, Macromolecule like aspect for colloidal suspension of nanosheets and dynamic reassembling process initiated from it, J. Am. Chem. Soc., 118, 8329, 10.1021/ja960073b
Omomo, 2003, Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide, J. Am. Chem. Soc., 125, 3568, 10.1021/ja021364p
Miyamoto, 2002, Formation of extraordinarily large nanosheets from K4Nb6O7 crystals, Chem. Commun., 2378, 10.1039/b206998a
Yang, 1991, Structure of single-molecular-layer MoS2, Phys. Rev. B, 43, 12053, 10.1103/PhysRevB.43.12053
Alberti, 2000, Formation of aqueous colloidal dispersions of exfoliated gamma-zirconium phosphate by intercalation of short alkylamines, Langmuir, 16, 7663, 10.1021/la0006061
Ait Ali, 2014, Chemical synthesis of silicon nanosheets from layered calcium disilicide, J. Phys: Conf. Ser., 491, 012009
Kauzlarich, 1996
Schäfer, 1985, On the problem of polar intermetallic compounds: the stimulation of E. Zintl’s work for the modern chemistry of intermetallics, Annu. Rev. Mater. Sci., 15, 141, 10.1146/annurev.ms.15.080185.000245
Gärtner, 2011, vol. 140, S. 25
Schäfer, 1973, Zintl phases: transitions between metallic and ionic bonding, Angew. Chem. Int. Ed. Engl., 12, 694, 10.1002/anie.197306941
Böhm, 1927, Die kristallstruktur des calcium silicides CaSi2, Z. Anorg. Allg. Chem., 160, 152, 10.1002/zaac.19271600115
Wallbaum, 1944, Ueber intermetallischen Germaniumverbindungen, Naturwissenschaften, 32, 76, 10.1007/BF01468012
Weiss, 1979, The topochemical reaction of CaSi2 to a two-dimensional subsiliceous acid Si6H3(OH)3, Naturforschung, 35b, 25
Bonitz, 1961, Lepidoide VI: ein neuer weg zur herstellung von aktivem silicium oder siliciummonochlorid, Chem. Ber., 94, 220, 10.1002/cber.19610940133
Kautsky, 1952, Probleme der siliciumchemie – zweidimensionale kristallstrukturen, Z. Naturforsch., 7b, 174, 10.1515/znb-1952-0307
Bonitz, 1966, Reactions of elementary silicon, Angew. Chem. Int. Ed. Engl., 5, 462, 10.1002/anie.196604621
Brandt, 2003, 194
Hengge, 1967, Siloxen und schichtformig gebaute siliciumverbindungen, Fortschr. Chem. Forsch., 9, 145, 10.1007/BFb0051672
Dettlaff-Weglikowska, 1997, Structure and optical properties of the planar silicon compounds polysilane and Wöhler siloxene, Phys. Rev. B, 56, 13132, 10.1103/PhysRevB.56.13132
Sugiyama, 2010, Synthesis of siloxene derivatives with organic groups, Chem. Lett., 39, 938, 10.1246/cl.2010.938
Dahn, 1993, Structure of siloxene and layered polysilane (Si6H6), Phys. Rev. B, 48, 17872, 10.1103/PhysRevB.48.17872
Nakano, 2005, Preparation and structure of novel siloxene nanosheets, Chem. Commun., 2945, 10.1039/b500758e
Yamanaka, 1996, New deintercalation reaction of. calcium from calcium disilicide. Synthesis of layered polysilane, Mater. Res. Bull., 31, 307, 10.1016/0025-5408(95)00195-6
Nishimura, 1996, Characterization of layered polysilane, Jpn. J. Appl. Phys., 35, L293, 10.1143/JJAP.35.L293
Nakano, 2012, Preparation of alkyl-modified silicon nanosheets by hydrosilylation of layered polysilane (Si6H6), J. Am. Chem. Soc., 134, 5452, 10.1021/ja212086n
Sugiyama, 2010, Synthesis and optical properties of monolayer organosilicon nanosheets, J. Am. Chem. Soc., 132, 5946, 10.1021/ja100919d
Bergerson, 1999, Assembly of organic molecules on silicon surfaces via the Si–N linkages, J. Am. Chem. Soc., 121, 454, 10.1021/ja9832966
Rogozhina, 2001, Si–N linkage in ultrabright, ultrasmall Si nanoparticles, Appl. Phys. Lett., 78, 3711, 10.1063/1.1377619
Liao, 2006, Self-assembly of organic monolayers on aerosolized silicon nanoparticles, J. Am. Chem. Soc., 128, 9061, 10.1021/ja0611238
Okamoto, 2010, Silicon nanosheets and their self-assembled regular stacking structure, J. Am. Chem. Soc., 132, 2710, 10.1021/ja908827z
Socrates, 2001
Whittingham, 2008, Materials challenges facing electrical energy storage, MRS Bull., 33, 411, 10.1557/mrs2008.82
Jeong, 2011, Prospective materials and applications for Li secondary batteries, Energy Environ. Sci., 4, 1986, 10.1039/c0ee00831a
Kasavajjula, 2007, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, J. Power Sources, 163, 1003, 10.1016/j.jpowsour.2006.09.084
Chan, 2008, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotech., 3, 31, 10.1038/nnano.2007.411
Zhao, 2012, Reactive flow in silicon electrodes assisted by the insertion of lithium, Nano Lett., 12, 4397, 10.1021/nl302261w
Zhang, 2011, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 196, 13, 10.1016/j.jpowsour.2010.07.020
Wen, 1981, Chemical diffusion in intermediate phases in the lithium–silicon system, J. Solid State Chem., 37, 271, 10.1016/0022-4596(81)90487-4
Beaulieu, 2003, Reaction of Li with alloy thin films studied by in situ AFM, J. Electrochem. Soc., 150, A1457, 10.1149/1.1613668
Chan, 2010, Controlling diffusion of lithium in silicon nanostructures, Nano Lett., 10, 821, 10.1021/nl903183n
Wu, 2012, Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control, Nat. Nanotech., 7, 310, 10.1038/nnano.2012.35
Zhao, 2011, Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge, J. Am. Ceram. Soc., 94, s226, 10.1111/j.1551-2916.2011.04432.x
Wu, 2012, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 7, 414, 10.1016/j.nantod.2012.08.004
Coleman, 2011, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, 331, 568, 10.1126/science.1194975
Lee, 2010, Silicon nanoparticles–graphene paper composites for Li ion battery anodes, Chem. Commun., 46, 2025, 10.1039/b919738a
Kaskhedikar, 2009, Lithium storage in carbon nanostructures, Adv. Mater., 21, 2664, 10.1002/adma.200901079
Yoo, 2008, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Lett., 8, 2277, 10.1021/nl800957b
Wang, 2010, Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires, ACS Appl. Mater. Interfaces, 2, 3709, 10.1021/am100857h
Zhou, 2013, Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries, ACS Appl. Mater. Interfaces, 5, 3449, 10.1021/am400521n
Wu, 2014, Three-dimensional interconnected network of graphene-wrapped porous silicon spheres: in situ magnesiothermic-reduction synthesis and enhanced lithium-storage capabilities, ACS Appl. Mater. Interfaces, 6, 3546, 10.1021/am405725u
Xu, 2013, Graphene-based electrodes for electrochemical energy storage, Energy Environ. Sci., 6, 1388, 10.1039/c3ee23870a
Takeda, 1994, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite, Phys. Rev. B, 50, 14916, 10.1103/PhysRevB.50.14916
Wang, 2000, Theoretical investigations of bond properties in graphite and graphitic silicon, Phys. Rev. B, 61, 12864, 10.1103/PhysRevB.61.12864
Zhang, 2011, Anisotropic lithium insertion behavior in silicon nanowires: binding energy, diffusion barrier, and strain effect, J. Phys. Chem. C, 115, 9376, 10.1021/jp1115977
Cubuk, 2013, Morphological evolution of Si nanowires upon lithiation: a first-principles multiscale model, Nano Lett., 13, 2011, 10.1021/nl400132q
Osborn, 2012, Stability of lithiated silicene from first principles, J. Phys. Chem. C, 116, 22916, 10.1021/jp306889x
Drummond, 2012, Electrically tunable band gap in silicene, Phys. Rev. B, 85, 075423, 10.1103/PhysRevB.85.075423
Lin, 2012, Much stronger binding of metal adatoms to silicene than to graphene: a first-principles study, Phys. Rev. B, 86, 075440, 10.1103/PhysRevB.86.075440
Tritsaris, 2013, Adsorption and diffusion of lithium on layered silicon for Li-ion storage, Nano Lett., 13, 2258, 10.1021/nl400830u
Yang, 2009, A metallic graphene layer adsorbed with lithium, Appl. Phys. Lett., 94, 163115, 10.1063/1.3126008
Zhao, 2011, Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study, Nano Lett., 11, 2962, 10.1021/nl201501s
Sethuraman, 2010, In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation, J. Power Sources, 195, 5062, 10.1016/j.jpowsour.2010.02.013
Zhang, 2010, Lithium insertion in silicon nanowires: an ab initio study, Nano Lett., 10, 3243, 10.1021/nl904132v
Fiori, 2014, Electronics based on two-dimensional materials, Nat. Nanotech., 9, 768, 10.1038/nnano.2014.207
Ezawa, 2014, Electrically tunable conductance and edge modes in topological crystalline insulator thin films: minimal tight-binding model analysis, New J. Phys., 16, 065015, 10.1088/1367-2630/16/6/065015
Lin, 2014, Tailoring of the structural, energetic and electronic properties of silicene-based nanostructures, J. Phys: Conf. Ser., 491, 012005
Zberecki, 2013, Thermoelectric effects in silicene NRs, Phys. Rev. B, 88, 115404, 10.1103/PhysRevB.88.115404
Fang, 2013, Tuning the electronic and magnetic properties of zigzag silicene NRs by edge hydrogenation and doping, RSC Adv., 3, 24075, 10.1039/c3ra42720j
Mayne, 2006, Atomic-scale studies of hydrogenated semiconductor surfaces, Prog. Surf. Sci., 81, 1, 10.1016/j.progsurf.2006.01.001
Leftwich, 2008, Adsorption of molecules on silicon surfaces, Surf. Sci. Rep., 63, 1
Tang, 2013, Graphene-related nanomaterials: tuning properties by functionalization, Nanoscale, 5, 4541, 10.1039/c3nr33218g
Zhou, 2014, Graphene’s cousin: the present and future of graphane, Nanoscale Res. Lett., 9, 26, 10.1186/1556-276X-9-26
Boland, 1993, Scanning tunnelling microscopy studies of the interaction of hydrogen with silicon surfaces, Adv. Phys., 42, 129, 10.1080/00018739300101474
Bellec, 2009, Imaging molecular orbitals by scanning tunneling microscopy on a passivated semiconductor, Nano Lett., 9, 144, 10.1021/nl802688g
Shen, 1995, Atomic-scale desorption through electronic and vibrational excitation mechanisms, Science, 268, 1590, 10.1126/science.268.5217.1590
Soukiassian, 2003, Atomic scale desorption of H atoms from the Si(100)-(2×1): H surface: are so many electrons really necessary?, Phys. Rev. B, 68, 035303, 10.1103/PhysRevB.68.035303
Soukiassian, 2003, Atomic wire fabrication by STM-induced hydrogen desorption, Surf. Sci., 528, 121, 10.1016/S0039-6028(02)02620-1
Eda, 2010, Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics, Adv. Mater., 22, 2392, 10.1002/adma.200903689
Zhu, 2010, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22, 3906, 10.1002/adma.201001068
Pelz, 1991, Successive oxidation stages and annealing behavior of the Si(111) 7×7 surface observed with scanning tunneling microscopy and scanning tunneling spectroscopy, J. Vac. Sci. Technol., B, 9, 775, 10.1116/1.585509
Dujardin, 1996, A new model for the adsorption of O2 on Si(111)-(7×7) studied by STM, Phys. Rev. Lett., 76, 3782, 10.1103/PhysRevLett.76.3782
Mayne, 2003, Variable temperature STM studies of the adsorption of oxygen on the Si(111)-7×7 surface, Surf. Sci., 528, 132, 10.1016/S0039-6028(02)02622-5
Hemeryck, 2007, Difficulty for oxygen to incorporate into the silicon network during initial oxidation, J. Chem. Phys., 126, 114707, 10.1063/1.2566299
De Padova, 2013, Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons, J. Phys.: Condens. Matter, 25, 014009
Premlal, 2009, Surface intercalation of gold underneath a graphene monolayer on SiC(0001) studied by scanning tunneling microscopy and spectroscopy, Appl. Phys. Lett., 94, 263115, 10.1063/1.3168502
Vlaic, 2014, Cobalt intercalation at the graphene/iridium(111) interface: influence of rotational domains, wrinkles, and atomic steps, Appl. Phys. Lett., 104, 101602, 10.1063/1.4868119
Salomon, 2008, One-dimensional organic nanostructures: a novel approach based on the selective adsorption of organic molecules on silicon nanowires, Surf. Sci., 602, L79, 10.1016/j.susc.2008.04.023
Papageorgiou, 2003, Self-assembled molecular chains formed by selective adsorption of Pb-phthalocyanine on InSb(100)-4×2-c(8×2), Appl. Phys. Lett., 82, 2518, 10.1063/1.1566802
Baffou, 2007, Anchoring phthalocyanine molecules on the 6H-SiC(0001)-3×3 surface, Appl. Phys. Lett., 91, 073101, 10.1063/1.2769761
Wang, 2009, Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene, Nat. Chem., 1, 200, 10.1038/nchem.212
Yang, 2013, STM spectroscopy & manipulation of a self-assembled PTCDI layer on epitaxial graphene, Phys. Chem. Chem. Phys., 15, 4939, 10.1039/c3cp42591f
Duong, 2012, Band-gap engineering in chemically conjugated bilayer graphene: ab initio calculations, Phys. Rev. B, 85, 205413, 10.1103/PhysRevB.85.205413
Bechstedt, 2012, Infrared absorbance of silicene and germanene, Appl. Phys. Lett., 100, 261906, 10.1063/1.4731626
K. Chinnathambi, A. Chakrabarti, A. Banerjee, S.K. Deb, Optical Properties of Graphene-like Two Dimensional Silicene, arXiv:1205.5099v1.
Matthes, 2014, Optical properties of two-dimensional honeycomb crystals graphene, silicene, germanene, and tinene from first principles, New J. Phys., 16, 105007, 10.1088/1367-2630/16/10/105007
Tabert, 2013, Valley–spin polarization in the magneto-optical response of silicene and other similar 2D crystals, Phys. Rev. Lett., 110, 197402, 10.1103/PhysRevLett.110.197402