SiO2 Giúp Tăng Cường Tính Siêu Kỵ Nước của Vải Cotton Được Phủ Polybenzoxazine Cardanol và Hành Vi Tách Biệt Dầu – Nước

Silicon - Trang 1-13 - 2023
Srinithi Jeyachandran1, Thirumarimurugan Marimuthu1
1Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore, India

Tóm tắt

Trong nghiên cứu này, các lượng khác nhau của SiO2 đã được kết hợp với monomer cardanol-diaminodiphenylmethane (C-ddm) để tạo ra bề mặt cotton siêu kỵ nước/siêu ưa dầu. Việc kết hợp silica với monomer C-ddm được thực hiện thông qua cả hai phương pháp tại chỗ và ngoài chỗ. Tetraethylorthosilicate (TEOS) đã được thêm vào như một tiền chất silica trong trường hợp phương pháp tại chỗ, trong khi silica mao quản đã được chuẩn bị trước (SBA-15) được thêm vào tách biệt trong trường hợp phương pháp ngoài chỗ. Chất liên kết silane đã được sử dụng trong cả hai phương pháp để tạo ra lớp phủ lai hữu cơ-vô cơ. Sau đó, các thuộc tính và đặc điểm bề mặt của các loại vải cotton đã được sửa đổi đã được phân tích. Vải được sửa đổi SiO2/poly(C-ddm) tại chỗ cho thấy góc tiếp xúc với nước (WCA) là 153° và góc trượt thấp là 9°, cao hơn so với vải được sửa đổi SBA-15/poly(C-ddm) ngoài chỗ. Phân tích vi mô cho thấy việc kiểm soát sự rối loạn chuỗi của chuỗi carbon cardanol được ưa thích với việc kết hợp silica tại chỗ. Chúng tôi nhận thấy rằng vải cotton được sửa đổi tại chỗ với 5% SiO2/poly (C-ddm) hiệu quả trong việc tách biệt hỗn hợp dầu-nước, với hiệu quả tách biệt đạt 99,1% và giá trị dòng chảy là 13.500 L/m2h. Nghiên cứu này nhấn mạnh tầm quan trọng của mạng lưới lai silica trong việc đạt được bề mặt siêu kỵ nước cho các ứng dụng tách biệt dầu-nước, và gợi ý thực hiện thêm các nghiên cứu về cấu trúc phân tử liên quan trong các lớp phủ lai.

Từ khóa


Tài liệu tham khảo

Huynh BQ, Kwong LH, Kiang MV et al (2021) Public health impacts of an imminent Red Sea oil spill. Nat Sustain 4:1084–1091. https://doi.org/10.1038/s41893-021-00774-8 Beyer J, Trannum HC, Bakke T et al (2016) Environmental effects of the Deepwater Horizon oil spill: A review. Mar Pollut Bull 110:28–51. https://doi.org/10.1016/j.marpolbul.2016.06.027 Karmelich C, Wan Z, Tian W et al (2023) Advancing hyper-crosslinked materials with high efficiency and reusability for oil spill response. Sci Rep 13:1–9. https://doi.org/10.1038/s41598-023-36577-4 Shayesteh H, Khosrowshahi MS, Mashhadimoslem H et al (2023) Durable superhydrophobic/superoleophilic melamine foam based on biomass-derived porous carbon and multi-walled carbon nanotube for oil/water separation. Sci Rep 13:4515. https://doi.org/10.1038/s41598-023-31770-x Liu B, Chen B, Ling J et al (2022) Development of advanced oil/water separation technologies to enhance the effectiveness of mechanical oil recovery operations at sea: Potential and challenges. J Hazard Mater 437:129340. https://doi.org/10.1016/j.jhazmat.2022.129340 Li B, Qi B, Guo Z et al (2023) Recent developments in the application of membrane separation technology and its challenges in oil-water separation: A review. Chemosphere 327:138528. https://doi.org/10.1016/j.chemosphere.2023.138528 Zhong X, Guo Z (2023) Simple and Ultrahigh Efficient Superhydrophilic Polydopamine-coated TiO2 Cotton for Oil–water Separation. J Bionic Eng 20:900–909. https://doi.org/10.1007/s42235-022-00312-y Song Q, Wang H, Han S et al (2020) Halloysite nanotubes functionalized cotton fabric for oil/water separation. Prog Org Coatings 148:105839. https://doi.org/10.1016/j.porgcoat.2020.105839 Hartman C, Popowski Y, Raichman D, Amir E (2020) Biodegradable polymer coating for controlled release of hydrophobic functional molecules from cotton fabrics. J Coatings Technol Res 17:669–679. https://doi.org/10.1007/s11998-019-00278-3 Zhang Y, Shahid-ul-Islam RLJ, Li Q (2022) Recent advances in the surface modification strategies to improve functional finishing of cotton with natural colourants - A review. J Clean Prod 335:130313. https://doi.org/10.1016/j.jclepro.2021.130313 Yang S, Li J, Yang N et al (2021) Underwater superoleophobic graphene oxide-connected cotton fibers membrane for antifouling oil/water separation. J Water Process Eng 44:102334. https://doi.org/10.1016/j.jwpe.2021.102334 Agrawal N, Low PS, Tan JSJ et al (2020) Durable easy-cleaning and antibacterial cotton fabrics using fluorine-free silane coupling agents and CuO nanoparticles. Nano Mater Sci 2:281–291. https://doi.org/10.1016/j.nanoms.2019.09.004 Xu Q, Wang L, Fu F, Liu X (2020) Fabrication of fluorine-free superhydrophobic cotton fabric using fumed silica and diblock copolymer via mist modification. Prog Org Coatings 148:105884. https://doi.org/10.1016/j.porgcoat.2020.105884 Gao Y, He C, Huang Y, Qing FL (2010) Novel water and oil repellent POSS-based organic/inorganic nanomaterial: Preparation, characterization and application to cotton fabrics. Polymer (Guildf) 51:5997–6004. https://doi.org/10.1016/j.polymer.2010.10.020 Singh AK, Singh JK (2017) Fabrication of durable super-repellent surfaces on cotton fabric with liquids of varying surface tension: Low surface energy and high roughness. Appl Surf Sci 416:639–648. https://doi.org/10.1016/j.apsusc.2017.04.148 Rius-Ayra O, Carmona-Ruiz M, Llorca-Isern N (2023) Superhydrophobic cotton fabrics for effective removal of high-density polyethylene and polypropylene microplastics: Insights from surface and colloidal analysis. J Colloid Interface Sci 646:763–774. https://doi.org/10.1016/j.jcis.2023.05.127 Singh AK, Singh JK (2019) An efficient use of waste PE for hydrophobic surface coating and its application on cotton fibers for oil-water separator. Prog Org Coatings 131:301–310. https://doi.org/10.1016/j.porgcoat.2019.02.025 Qing Y, Zheng Y, Hu C et al (2013) Facile approach in fabricating superhydrophobic ZnO/polystyrene nanocomposite coating. Appl Surf Sci 285:583–587. https://doi.org/10.1016/j.apsusc.2013.08.097 Prabunathan P, Elumalai P, Dinesh Kumar G et al (2020) Antiwetting and low-surface-energy behavior of cardanol-based polybenzoxazine-coated cotton fabrics for oil–water separation. J Coatings Technol Res 17:1455–1469. https://doi.org/10.1007/s11998-020-00365-w Dinesh Kumar G, Prabunathan P, Manoj M et al (2020) Fluorine Free Bio-Based Polybenzoxazine Coated Substrates for Oil-Water Separation and Anti-Icing Applications. J Polym Environ 28:2444–2456. https://doi.org/10.1007/s10924-020-01782-z Fan Q, Lu T, Deng Y et al (2022) Bio-based materials with special wettability for oil-water separation. Sep Purif Technol 297:121445. https://doi.org/10.1016/j.seppur.2022.121445 Shahid M, Maiti S, Adivarekar RV, Liu S (2022) Biomaterial based fabrication of superhydrophobic textiles – A review. Mater Today Chem 24:100940. https://doi.org/10.1016/j.mtchem.2022.100940 Cheng QY, An XP, Li YD et al (2017) Sustainable and Biodegradable Superhydrophobic Coating from Epoxidized Soybean Oil and ZnO Nanoparticles on Cellulosic Substrates for Efficient Oil/Water Separation. ACS Sustain Chem Eng 5:11440–11450. https://doi.org/10.1021/acssuschemeng.7b02549 Ren J, Tao F, Liu L et al (2020) A novel TiO2@stearic acid/chitosan coating with reversible wettability for controllable oil/water and emulsions separation. Carbohydr Polym 232:115807. https://doi.org/10.1016/j.carbpol.2019.115807 Cheng QY, Liu MC, Li YD et al (2018) Biobased super-hydrophobic coating on cotton fabric fabricated by spray-coating for efficient oil/water separation. Polym Test 66:41–47. https://doi.org/10.1016/j.polymertesting.2018.01.005 Balachandran VS, Jadhav SR, Vemula PK, John G (2013) Recent advances in cardanol chemistry in a nutshell: From a nut to nanomaterials. Chem Soc Rev 42:427–438. https://doi.org/10.1039/c2cs35344j Voirin C, Caillol S, Sadavarte NV et al (2014) Functionalization of cardanol: Towards biobased polymers and additives. Polym Chem 5:3142–3162. https://doi.org/10.1039/c3py01194a Caillol S (2018) Cardanol: A promising building block for biobased polymers and additives. Curr Opin Green Sustain Chem 14:26–32. https://doi.org/10.1016/j.cogsc.2018.05.002 Huang J, Lou C, Xu D et al (2019) Cardanol-based polybenzoxazine superhydrophobic coating with improved corrosion resistance on mild steel. Prog Org Coatings 136:105191. https://doi.org/10.1016/j.porgcoat.2019.06.037 Yao H, Lu X, Chen S et al (2020) A Robust Polybenzoxazine/SiO2Fabric with Superhydrophobicity for High-Flux Oil/Water Separation. Ind Eng Chem Res 59:7787–7796. https://doi.org/10.1021/acs.iecr.9b06003 Cheng J, Shang Q, Liu C et al (2021) Fabrication of cardanol-based superhydrophobic cotton fabric for highly effective oil-water separation. Mater Today Commun 29:102820. https://doi.org/10.1016/j.mtcomm.2021.102820 Kwok DY, Neumann AW (1999) Contact angle measurement and contact angle interpretation. Adv Colloid Interface Sci 81:167–249. https://doi.org/10.1016/S0001-8686(98)00087-6 Bai W, Lin H, Chen K et al (2020) Eco-friendly stable cardanol-based benzoxazine modified superhydrophobic cotton fabrics for oil–water separation. Sep Purif Technol 253:117545. https://doi.org/10.1016/j.seppur.2020.117545 Lochab B, Varma IK, Bijwe J (2013) Blends of benzoxazine monomers: Effect of structure and composition on polymer properties. J Therm Anal Calorim 111:1357–1364. https://doi.org/10.1007/s10973-012-2469-1 Lochab B, Varma IK, Bijwe J (2012) Cardanol-based bisbenzoxazines: Effect of structure on thermal behaviour. J Therm Anal Calorim 107:661–668. https://doi.org/10.1007/s10973-011-1854-5 Monisha M, Amarnath N, Mukherjee S, Lochab B (2019) Cardanol Benzoxazines: A Versatile Monomer with Advancing Applications. Macromol Chem Phys 220:1800470. https://doi.org/10.1002/macp.201800470 Lochab B, Varma IK, Bijwe J (2010) Thermal behaviour of cardanol-based benzoxazines: Monomers and polymers. J Therm Anal Calorim 102:769–774. https://doi.org/10.1007/s10973-010-0736-6 Wang YX, Ishida H (1999) Cationic ring-opening polymerization of benzoxazines Polymer (Guildf) 40:4563–4570. https://doi.org/10.1016/S0032-3861(99)00074-9 Ishida H, Rodriguez Y (1995) Catalyzing the curing reaction of a new benzoxazine-based phenolic resin. J Appl Polym Sci 58:1751–1760. https://doi.org/10.1002/app.1995.070581013 Ishida H, Low HY (1997) A study on the volumetric expansion of benzoxazine-based phenolic resin. Macromolecules 30:1099–1106. https://doi.org/10.1021/ma960539a Rao BS, Palanisamy A (2011) Monofunctional benzoxazine from cardanol for bio-composite applications. React Funct Polym 71:148–154. https://doi.org/10.1016/j.reactfunctpolym.2010.11.025 Santeusanio S, Attanasi OA, Majer R et al (2013) Effect of hydrogenated cardanol on the structure of model membranes studied by EPR and NMR. Langmuir 29:11118–11126. https://doi.org/10.1021/la402008n Liu Z, Chen J, Knothe G et al (2016) Synthesis of Epoxidized Cardanol and Its Antioxidative Properties for Vegetable Oils and Biodiesel. ACS Sustain Chem Eng 4:901–906. https://doi.org/10.1021/acssuschemeng.5b00991 Shukla S, Yadav N, Lochab B (2017) Cardanol-Based Benzoxazines and Their Applications. Adv Emerg Polybenzoxazine Sci Technol 451–472. https://doi.org/10.1016/B978-0-12-804170-3.00024-X Chung C, Lee M, Choe EK (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr Polym 58:417–420. https://doi.org/10.1016/j.carbpol.2004.08.005 Peets P, Kaupmees K, Vahur S, Leito I (2019) Reflectance FT-IR spectroscopy as a viable option for textile fiber identification. Herit Sci 7:1–10. https://doi.org/10.1186/s40494-019-0337-z Hashemikia S, Hemmatinejad N, Ahmadi E, Montazer M (2016) A novel cotton fabric with anti-bacterial and drug delivery properties using SBA-15-NH2/polysiloxane hybrid containing tetracycline. Mater Sci Eng C 59:429–437. https://doi.org/10.1016/j.msec.2015.09.092 Gopalsamy S, Govindharajan T (2022) Mesoporous silica/epoxy coated cotton fabric for durable oil-water separation. J Ind Text 51:5973S-6000S. https://doi.org/10.1177/15280837221101176 Yeh JT, Chen CL, Huang KS (2007) Preparation and application of fluorocarbon polymer/ SiO2 hybrid materials, part 2: Water and oil repellent processing for cotton fabrics by sol-gel method. J Appl Polym Sci 103:3019–3024. https://doi.org/10.1002/app.25048 Xu L, Shen Y, Wang L et al (2015) Preparation of vinyl silica-based organic/inorganic nanocomposites and superhydrophobic polyester surfaces from it. Colloid Polym Sci 293:2359–2371. https://doi.org/10.1007/s00396-015-3624-6 Zhi D, Lu Y, Sathasivam S et al (2017) Large-scale fabrication of translucent and repairable superhydrophobic spray coatings with remarkable mechanical, chemical durability and UV resistance. J Mater Chem A 5:10622–10631. https://doi.org/10.1039/c7ta02488f Ibrahim S, Sultan M (2020) Superhydrophobic Coating Polymer/Silica Nanocomposites: Part I Synthesis and Characterization as Eco-Friendly Coating. SILICON 12:805–811. https://doi.org/10.1007/s12633-019-00172-y Li H, Feng X, Zhang K (2021) Study of the Classical Cassie Theory and Wenzel Theory Used in Nanoscale. J Bionic Eng 18:398–408. https://doi.org/10.1007/s42235-021-0029-8 Zu L, Li R, Jin L et al (2014) Preparation and characterization of polypropylene/silica composite particle with interpenetrating network via hot emulsion sol-gel approach. Prog Nat Sci Mater Int 24:42–49. https://doi.org/10.1016/j.pnsc.2014.01.001 Arumugam V, Kanthapazham R, Zherebtsov DA et al (2021) Fluorine free TiO2/cyanate ester coated cotton fabric with low surface free energy and rough surface for durable oil–water separation. Cellulose 28:4847–4863. https://doi.org/10.1007/s10570-021-03822-w Manickam M, Pichaimani P, Arumugam H, Muthukaruppan A (2019) Synthesis of Nontoxic Pyrazolidine-Based Benzoxazine-Coated Cotton Fabric for Oil-Water Separation. Ind Eng Chem Res 58:21419–21430. https://doi.org/10.1021/acs.iecr.9b03440 Zhu Y, Du Y, Su J et al (2021) Durable superhydrophobic melamine sponge based on polybenzoxazine and Fe3O4 for oil/water separation. Sep Purif Technol 275:119130. https://doi.org/10.1016/j.seppur.2021.119130 Periyasamy T, Asrafali SP, Haldhar R et al (2022) Modified Cotton Sponge with Bio-Based Polybenzoxazine for Plasticizer Absorption and Oil-Water Separation. ACS Appl Polym Mater 4:950–959. https://doi.org/10.1021/acsapm.1c01408 Ma W, Li L, Ren X, Huang TS (2019) Rational design of cotton substrates with enhanced UV–blocking, high antibacterial efficiency and prominent hydrophobicity. Cellulose 26:5757–5768. https://doi.org/10.1007/s10570-019-02455-4 Godnjavec J, Znoj B, Veronovski N, Venturini P (2012) Polyhedral oligomeric silsesquioxanes as titanium dioxide surface modifiers for transparent acrylic UV blocking hybrid coating. Prog Org Coatings 74:654–659. https://doi.org/10.1016/j.porgcoat.2011.09.032