Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering

Energy Storage Materials - Tập 30 - Trang 392-400 - 2020
Fei Yan1, Wei Huang1, Tongying Jiang1, Xiaofeng Zhou1, Yunjing Shi1, Guanglong Ge1, Bo Shen1, Jiwei Zhai1
1Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zou, 2019, Recent advances in lead-free dielectric materials for energy storage, Mater. Res. Bull., 113, 190, 10.1016/j.materresbull.2019.02.002

Yang, 2019, Perovskite lead-free dielectrics for energy storage applications, Prog. Mater. Sci., 102, 72, 10.1016/j.pmatsci.2018.12.005

Dang, 2013, Flexible nanodielectric materials with high permittivity for power energy storage, Adv. Mater., 25, 6334, 10.1002/adma.201301752

Han, 2015, A hybrid material approach toward solution-processable dielectrics exhibiting enhanced breakdown strength and high energy density, Adv. Funct. Mater., 25, 3505, 10.1002/adfm.201501070

Palneedi, 2018, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook, Adv. Funct. Mater., 28, 10.1002/adfm.201803665

Wang, 2019, Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity, Energy Environ. Sci., 12, 582, 10.1039/C8EE03287D

Ma, 2019, Enhanced energy-storage performance with excellent stability under low electric fields in BNT-ST relaxor ferroelectric ceramics, J. Mater. Chem. C, 7, 281, 10.1039/C8TC04447C

Wang, 2018, High energy storage density and large strain in Bi(Zn2/3Nb1/3)O3-Doped BiFeO3-BaTiO3 ceramics, ACS Appl. Energy Mater., 1, 4403, 10.1021/acsaem.8b01099

Chen, 2008, High field tunneling as a limiting factor of maximum energy density in dielectric energy storage capacitors, Appl. Phys. Lett., 92

Zhou, 2018, Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy, J. Mater. Chem. A, 6, 17896, 10.1039/C8TA07303A

Zhou, 2018, Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability, J. Mater. Chem. C, 6, 8528, 10.1039/C8TC03003K

Yang, 2019, A novel lead-free ceramic with layered structure for high energy storage applications, J. Alloy, Compd, 773, 244, 10.1016/j.jallcom.2018.09.252

Zhang, 2016, High recoverable energy density over a wide temperature range in Sr modified (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric ceramics with an orthorhombic phase, Appl. Phys. Lett., 109, 10.1063/1.4973425

Liu, 2018, Antiferroelectrics for energy storage applications: a review, Adv. Mater. Technol., 3, 10.1002/admt.201800111

Yao, 2017, Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances, Adv. Mater., 29, 10.1002/adma.201601727

Chauhan, 2015, Anti-ferroelectric ceramics for high energy density capacitors, Materials, 8, 8009, 10.3390/ma8125439

Hao, 2014, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials, Prog. Mater. Sci., 63, 1, 10.1016/j.pmatsci.2014.01.002

Xu, 2016, High charge-discharge performance of Pb0.98La0.02(Zr0.35Sn0.55Ti0.10)0.995O3 antiferroelectric ceramics, J. Appl. Phys., 120, 10.1063/1.4961329

Wang, 2019, Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions, Adv. Funct. Mater., 29

Liu, 2019, Ultra-high energy-storage density and fast discharge speed of (Pb0.98-xLa0.02Srx)(Zr0.9Sn0.1)0.995O3 antiferroelectric ceramics prepared via the tape-casting method, J. Mater. Chem. A, 7, 11858, 10.1039/C9TA02149C

Shen, 2015, BaTiO3-BiYbO3 perovskite materials for energy storage applications, J. Mater. Chem. A, 3, 18146, 10.1039/C5TA03614C

Wu, 2016, Lead-free BaTiO3-Bi(Zn2/3Nb1/3)O3 weakly coupled relaxor ferroelectric materials for energy storage, RSC Adv., 6, 14273, 10.1039/C5RA21261H

Li, 2017, Novel barium titanate based capacitors with high energy density and fast discharge performance, J. Mater. Chem. A, 5, 19607, 10.1039/C7TA05392D

Yang, 2018, Enhanced energy storage properties of Ba0.4Sr0.6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass addition, J. Eur. Ceram. Soc., 38, 1367, 10.1016/j.jeurceramsoc.2017.11.058

Pan, 2019, Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors, J. Mater. Chem. C, 7, 4072, 10.1039/C9TC00087A

Zhao, 2018, Temperature-stable dielectric and energy storage properties of La(Ti0.5Mg0.5)O3-doped (Bi0.5Na0.5)TiO3-(Sr0.7Bi0.2)TiO3 lead-free ceramics, J. Am. Ceram. Soc., 101, 5578, 10.1111/jace.15870

Yin, 2018, Ultrahigh energy-storage potential under low electric field in bismuth sodium titanate-based perovskite ferroelectrics, J. Mater. Chem. A, 6, 9823, 10.1039/C8TA00474A

Pu, 2018, High energy storage density and optical transparency of microwave sintered homogeneous (Na0.5Bi0.5)(1-x)BaxTi(1-y)SnyO3 ceramics, ACS Sustain. Chem. Eng., 6, 6102, 10.1021/acssuschemeng.7b04754

Li, 2018, Exploring novel bismuth-based materials for energy storage applications, J. Mater. Chem. C, 6, 7976, 10.1039/C8TC02801J

Wu, 2019, Enhanced energy storage properties in sodium bismuth titanate-based ceramics for dielectric capacitor applications, J. Mater. Chem. C, 7, 6222, 10.1039/C9TC01239G

Yang, 2018, Enhanced energy-storage properties of lanthanum-doped Bi0.5Na0.5TiO3-based lead-free ceramics, Energy Technol., 6, 357, 10.1002/ente.201700504

Wu, 2018, Perovskite Srx(Bi1-xNa0.97-xLi0.03)0.5TiO3 ceramics with polar nano regions for high power energy storage, Nano. Energy, 50, 723, 10.1016/j.nanoen.2018.06.016

Li, 2018, Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency, Adv. Mater., 30

Li, 2018, Simultaneously high-energy storage density and responsivity in quasi-hysteresis-free Mn-doped Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.2 0.1)TiO3 ergodic relaxor ceramics, Mater. Res. Lett., 6, 345, 10.1080/21663831.2018.1457095

Cao, 2016, Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics, J. Eur. Ceram. Soc., 36, 593, 10.1016/j.jeurceramsoc.2015.10.019

Yang, 2019, Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors, J. Mater. Chem. A, 7, 8573, 10.1039/C9TA01165J

Höfling, 2018, Optimizing the defect chemistry of Na1/2Bi1/2TiO3-based materials: paving the way for excellent high temperature capacitors, J. Mater. Chem. C, 6, 4769, 10.1039/C8TC01010B

Carter, 2014, Structure and ferroelectricity of nonstoichiometric (Na0.5Bi0.5)TiO3, Appl. Phys. Lett., 104, 10.1063/1.4868109

Seo, 2017, The effect of A site non-stoichiometry on 0.94(NayBix)TiO3-0.06BaTiO3, J. Eur. Ceram. Soc., 37, 1429, 10.1016/j.jeurceramsoc.2016.11.045

Li, 2014, A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3, Nat. Mater., 13, 31, 10.1038/nmat3782

Qiao, 2019, Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramic with large energy density and high efficiency under a moderate electric field, J. Mater. Chem. C, 7, 10514, 10.1039/C9TC03597D

Malik, 2016, Giant strain, thermally-stable high energy storage properties and structural evolution of Bi-based lead-free piezoceramics, J. Alloys Compd., 682, 302, 10.1016/j.jallcom.2016.04.297

Li, 2018, Novel barium titanate based ferroelectric relaxor ceramics with superior charge-discharge performance, J. Eur. Ceram. Soc., 38, 4646, 10.1016/j.jeurceramsoc.2018.06.038

Li, 2016, Controlling mixed conductivity in Na1/2Bi1/2TiO3 using A-site non-stoichiometry and Nb-donor doping, J. Mater. Chem. C, 4, 5779, 10.1039/C6TC01719C

Wang, 2019, An effective approach to achieve high energy storage density and efficiency in BNT-based ceramics by doping AgNbO3, Dalton Trans., 48, 17864, 10.1039/C9DT03654G

Sung, 2011, Effects of Bi nonstoichiometry in (Bi0.5+xNa)TiO3 ceramics, Appl. Phys. Lett., 98, 10.1063/1.3525370

Li, 2019, Structure-design strategy of 0-3 type (Bi0.32Sr0.42Na0.20)TiO3/MgO composite to boost energy storage density, efficiency and charge-discharge performance, J. Eur. Ceram. Soc., 39, 2889, 10.1016/j.jeurceramsoc.2019.03.047

Li, 2017, Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3-SrTiO3-NaNbO3 lead-free ferroelectric ceramics, J. Appl. Phys., 121

Jo, 2011, On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol%BaTiO3, J. Appl. Phys., 110, 10.1063/1.3645054

Xu, 2016, Structure and electrical properties of lead-free Bi0.5Na0.5TiO3-based ceramics for energy-storage applications, RSC Adv., 6, 59280, 10.1039/C6RA11744A

Hu, 2020, Achieve ultrahigh energy storage performance in BaTiO3-Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction, Nano. Energy, 67, 10.1016/j.nanoen.2019.104264

Qi, 2019, Excellent energy-storage properties of NaNbO3-based lead-free antiferroelectric orthorhombic P-phase (Pbma) ceramics with repeatable double polarization-field loops, J. Eur. Ceram. Soc., 39, 3703, 10.1016/j.jeurceramsoc.2019.05.043

Zhou, 2016, Energy storage properties and electrical behavior of lead-free (1-x)Ba0.04Bi0.48Na0.48TiO3-xSrZrO3 ceramics, J. Mater. Sci. Mater. Electron., 27, 3948, 10.1007/s10854-015-4247-x

Zhou, 2019, Superior thermal stability of high energy density and power density in domain-engineered Bi0.5Na0.5TiO3-NaTaO3 relaxor ferroelectrics, ACS Appl. Mater. Interfaces, 11, 43107, 10.1021/acsami.9b13215

Yang, 2017, A lead free relaxation and high energy storage efficiency ceramics for energy storage applications, J. Alloys Compd., 710, 436, 10.1016/j.jallcom.2017.03.261

Prasertpalichat, 2016, Hardening in non-stoichiometric (1-x)Bi0.5Na0.5TiO3-xBaTiO3 lead-free piezoelectric ceramics, J. Mater. Sci., 51, 476, 10.1007/s10853-015-9235-2

Kumar, 2014, Role of point defects in bipolar fatigue behavior of Bi(Mg1/2Ti1/2)O3 modified (Bi1/2K1/2)TiO3-(Bi1/2Na1/2)TiO3 relaxor ceramics, J. Appl. Phys., 115, 10.1063/1.4871671

Qu, 2016, Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability, J. Mater. Chem. C, 4, 1795, 10.1039/C5TC04005A

Yuan, 2018, Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics, Nano. Energy, 52, 203, 10.1016/j.nanoen.2018.07.055

Lin, 2019, Excellent energy-storage properties achieved in BaTiO3-based lead-free relaxor ferroelectric ceramics via domain engineering on the nanoscale, ACS Appl. Mater. Interfaces, 11, 36824, 10.1021/acsami.9b10819

Yang, 2016, Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics, J. Mater. Chem. A, 4, 13778, 10.1039/C6TA04107H

Yang, 2017, Enhanced recoverable energy storage density and high efficiency of SrTiO3-based lead-free ceramics, Appl. Phys. Lett., 111, 10.1063/1.5000980

Yan, 2017, Dielectric and ferroelectric properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0.5Nb0.5O3 lead-free ceramics for high-energy-storage applications, Inorg. Chem., 56, 13510, 10.1021/acs.inorgchem.7b02181

Zheng, 2015, Novel BiFeO3-BaTiO3-Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors, J. Am. Ceram. Soc., 98, 2692, 10.1111/jace.13737

Wang, 2018, Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density, J. Mater. Chem. A, 6, 4133, 10.1039/C7TA09857J

Zhao, 2018, Silver niobate lead-free antiferroelectric ceramics: enhancing energy storage density by B-site doping, ACS Appl. Mater. Interfaces, 10, 819, 10.1021/acsami.7b17382

Zhao, 2017, Lead-free antiferroelectric silver niobate tantalate with high energy storage performance, Adv. Mater., 29

Luo, 2019, Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density, J. Mater. Chem. A, 7, 14118, 10.1039/C9TA02053E