Significant enhancement of the electroactive β-phase of PVDF by incorporating hydrothermally synthesized copper oxide nanoparticles

RSC Advances - Tập 5 Số 127 - Trang 105422-105434
Biplab Dutta1,2,3,4, Epsita Kar1,2,3,4, Navonil Bose1,2,3,4, Sampad Mukherjee1,2,3,4
1Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, India
2Howrah-711103
3India
4Indian Institute of Engineering Science and Technology

Tóm tắt

The influence of copper oxide nanoparticles on the polymorphism of PVDF is systematically investigated. Strong interfacial interactions between the negative nanoparticle surface and positive –CH2dipoles of PVDF enhance the electroactive β-phase.

Từ khóa


Tài liệu tham khảo

Zhang, 1998, Science, 280, 2101, 10.1126/science.280.5372.2101

Bauer, 1996, J. Appl. Phys., 80, 5531, 10.1063/1.363604

Zhang, 2002, Nature, 419, 284, 10.1038/nature01021

Nambiar, 2011, Biosens. Bioelectron., 26, 1825, 10.1016/j.bios.2010.09.046

Mathur, 1984, J. Appl. Phys., 56, 2419, 10.1063/1.334294

Bryan, 2004, J. Neural Eng., 1, 91, 10.1088/1741-2560/1/2/004

Huang, 2008, Biomacromolecules, 9, 850, 10.1021/bm7011828

Kar, 2015, Phys. Chem. Chem. Phys., 17, 22784, 10.1039/C5CP03975D

Thakur, 2015, RSC Adv., 5, 62819, 10.1039/C5RA11407A

Xu, 2015, RSC Adv., 5, 36656, 10.1039/C5RA04889C

Martins, 2015, Nanoscale, 7, 9457, 10.1039/C5NR01397F

Fang, 2015, Nanoscale, 7, 17306, 10.1039/c5nr05098g

Yuan, 2014, J. Mater. Chem. A, 2, 6027, 10.1039/C3TA14188H

Martins, 2014, Prog. Polym. Sci., 39, 683, 10.1016/j.progpolymsci.2013.07.006

Lu, 2006, J. Am. Chem. Soc., 128, 8120, 10.1021/ja062306x

Karawasa, 1992, Macromolecules, 25, 7268, 10.1021/ma00052a031

Tomer, 2011, J. Appl. Phys., 110, 044107, 10.1063/1.3609082

Mandal, 2012, Mater. Lett., 73, 123, 10.1016/j.matlet.2011.11.117

Mandal, 2011, J. Phys. Chem. B, 115, 10567, 10.1021/jp201335j

da Silva, 2014, Polymer, 55, 226, 10.1016/j.polymer.2013.11.045

Levedev, 2010, J. Electrost., 68, 122, 10.1016/j.elstat.2009.11.007

Putson, 2011, J. Appl. Phys., 109, 024104, 10.1063/1.3534000

Thakur, 2014, Appl. Clay Sci., 99, 149, 10.1016/j.clay.2014.06.025

Thakur, 2015, Phys. Chem. Chem. Phys., 17, 1368, 10.1039/C4CP04006F

Bhadra, 2012, J. Phys. D: Appl. Phys., 45, 485002, 10.1088/0022-3727/45/48/485002

Lee, 2013, Chem. Commun., 49, 11047, 10.1039/c3cc46807k

Bose, 2012, Mater. Res. Bull., 47, 1368, 10.1016/j.materresbull.2012.03.009

Sharma, 2015, Cryst. Growth Des., 15, 3345, 10.1021/acs.cgd.5b00445

Abboud, 2014, Appl. Nanosci., 4, 571, 10.1007/s13204-013-0233-x

Park, 2015, Sci. Rep., 5, 09754, 10.1038/srep09754

Chafidz, 2014, J. Polym. Res., 21, 483, 10.1007/s10965-014-0483-7

Martins, 2012, CrystEngComm, 14, 2807, 10.1039/c2ce06654h

Hassan, 2011, Int. J. Electrochem. Sci., 6, 5741, 10.1016/S1452-3981(23)18441-0

Catarina Lopes, 2015, J. Phys. Chem. C, 119, 5211, 10.1021/acs.jpcc.5b00271

Lopes, 2011, J. Phys. Chem. C, 115, 18076, 10.1021/jp204513w

Lopes, 2013, J. Mater. Sci., 48, 2199, 10.1007/s10853-012-6995-9

Martins, 2013, J. Mater. Sci., 48, 2681, 10.1007/s10853-012-7063-1