Significant augmentation of proton conductivity in low sulfonated polyether sulfone octyl sulfonamide membranes through the incorporation of hectorite clay

Walid Mabrouk1, Khaled Charradi2, Imen Ben Kacem1,3, Ridha Lafi1, Nizar Bellakhal3, Riadh Marzouki4, Sherif M. A. S. Keshk5
1Laboratory Water, Membrane and Biotechnology of the Environment, Technoparc Borje Cedria, CERTE, Soliman, Tunisia
2Nanomaterials and Systems for Renewable Energy Laboratory, Research and Technology Center of Energy, Technoparc Borje CedriaCRTEn, Hammam Lif, Tunisia
3Ecochimie Laboratory, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
4Department of Chemistry, Faculty of Science and Arts, King Khalid University, Abha, Saudi Arabia
5Become: Deep Tech & Nanoscience, Paris, France

Tóm tắt

An innovative methodology was employed to fabricate ion exchange membranes tailored for fuel cell applications. This approach entailed blending low sulfonated polyether sulfone octyl sulfonamide (LSPSO) with Hectorite (Hect) clay at varying weight percentages (1 wt%, 3 wt%, and 6 wt%). The resultant composite membranes underwent comprehensive characterization via Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis, aiming to assess their surface morphology and thermal resilience. Remarkably, the thermal stability of the composite membrane exhibited a substantial enhancement in comparison to the pristine LSPSO membrane. Moreover, the incorporation of 6 wt% Hectorite into the composite membrane yielded a noteworthy amplification in proton conductivity, achieving a fourfold increase (141.66 mS/cm) as opposed to the LSPSO membrane in isolation (35.04 mS/cm). Consequently, the Hect/LSPSO composite membrane exhibits remarkable potential as an electrolyte membrane for fuel cells operating at temperatures surpassing 100 °C.

Tài liệu tham khảo

Chen, G., Zhang, H., Cheng, J., Ma, Y., Zhong, H.: A novel membrane electrode assembly for improving the efficiency of the unitized regenerative fuel cell. Electrochem. Commun.. Commun. 10, 1373–1376 (2008). https://doi.org/10.1016/j.elecom.2008.07.002 Mabrouk, W., Charradi, K., Lafi, R., AlSalem, H.S., Maghraoui-Meherzi, H., Keshk, S.M.A.S.: Augmentation in proton conductivity of sulfonated polyether sulfone octyl sulfonamide using sepiolite clay. J. Mater. Sci. 57, 15331–15339 (2022). https://doi.org/10.1007/s10853-022-07627-5 Mabrouk, W., Lafi, R., Fauvarque, J.F., Hafiane, A., Sollogoub, C.: New ion exchange membrane derived from sulfochlorated polyether sulfone for electrodialysis desalination of brackish water. Polym. Adv. Technol.. Adv. Technol. 32, 304–314 (2021). https://doi.org/10.1002/pat.5086 Baachaoui, S., Mabrouk, W., Charradi, K., Slimi, B., Ramadan, A.M., Elsamra, R.M.I., Keshk, S.M.A.S., Raouafi, N.: Laser-induced porous graphene electrodes from polyketmine membranes for Paracetamol sensing. R. Soc. Open. Sci. 10, 230294 (2023). https://doi.org/10.1098/rsos.230294 Baachaoui, S., Mabrouk, W., Rabti, A., Ghodbane, O., Raouafi, N.: Laser-induced graphene electrodes scribed onto novel carbon black-doped polyethersulfone for flexible high-performance. J. Colloid. Interf. Sci. 646, 1–10 (2023). https://doi.org/10.1016/j.jcis.2023.05.024 Vinodh, R., Atchudan, R., Kim, H.J., Yi, M.: Recent advancements in polysulfone based membranes for fuel cell (PEMFCs, DMFCs, and AMFCs) applications: a critical review. Polymers 14, 300 (2022). https://doi.org/10.3390/polym14020300 Maier, G., Meier-Haack, J.: Sulfonated aromatic polymers for fuel cell membranes. Adv. Polym. Sci.Polym. Sci. 216, 1–62 (2008). https://doi.org/10.1007/12_2008_135 Mabrouk, W., Ogier, L., Vidal, S., Sollogoub, C., Matoussi, F., Dachraoui, M., et al.: Synthesis and characterization of polymer blends of sulfonated polyethersulfone and sulfonated polyethersulfone octylsulfonamide for PEMFC applications. Fuel Cells. 2, 179–187 (2012). https://doi.org/10.1002/fuce.201100051 Ahmed, Z., Charradi, K., Alsulami, Q.A., Keshk, S.M.A.S., Chtourou, R.: Physicochemical characterization of low sulfonated polyether ether ketone/Smectite clay composite for proton exchange membrane fuel cells. J. Appl. Polym. Sci.Polym. Sci. 138, 49634–49642 (2021). https://doi.org/10.1002/app.49634 Mabrouk, W., Ogier, L., Matoussi, F., Sollogoub, C., Vidal, S., Dachraoui, M., et al.: Preparation of new proton exchange membranes using sulfonated poly(ethersulfone) modified by octylamine (SPESOS). Mater. Chem. Phys. 28, 456–463 (2011). https://doi.org/10.1016/j.matchemphys.2011.03.031 Simari, C., Lo Vecchio, C., Baglio, V., Nicotera, I.: Sulfonated polyethersulfone/poly ether ether ketone blend as high performing and cost-effective electrolyte membrane for direct methanol fuel cells. Renew. Energy Energy 159, 336–345 (2020). https://doi.org/10.1016/j.renene.2020.06.053 Mabrouk, W., Charradi, K., Maghraoui-Meherzi, H., Alhussein, H.A., Keshk, S.M.A.S.: Proton conductivity amelioration of sulfonated poly ether sulfone octyl sulfonamide via the incorporation of montmorillonite. J. Electron. Mater. 51, 6369–6378 (2022). https://doi.org/10.1007/s11664-022-09862-7 Mabrouk, W., Charradi, K., Mellekh, A., Hafiane, A., Alsulami, Q.A., Maghraoui-Meherzi, H., et al.: Enhanced proton conductivity of a sulfonated polyether sulfone octyl sulfonamide membrane via the incorporation of protonated montmorillonite. J. Electron. Mater. 52, 2158–2167 (2023). https://doi.org/10.1007/s11664-022-10183-y Zhang, J., Zhou, C.H., Petit, S., Zhang, H.: Hectorite: synthesis, modification, assembly and applications. Appl. Clay Sci. 177, 114–138 (2019). https://doi.org/10.1016/j.clay.2019.05.001 Mabrouk, W., Jebri, S., Charradi, K., Slimi, B., Alzahrani, A.Y.A., Boubakri, A., et al.: Fabrication and characterization of graphene/sulfonated polyether sulfone octyl sulfonamide hybrid film with improved proton conductivity performance. J. Solid. State. Electr. 27, 991–999 (2023). https://doi.org/10.1007/s10008-023-05411-2 Mabrouk, W., Ogier, L., Vidal, S., Sollogoub, C., Matoussi, F., Fauvarque, J.F.: Ion exchange membranes based upon crosslinked sulfonated polyethersulfone for electrochemical applications. J. Membrane Sci. 452, 363–270 (2014). https://doi.org/10.1016/j.memsci.2013.10.006 Mabrouk, W., Ogier, L., Sollogoub, C., Vidal, S., Matoussi, F., Fauvarque, J.F.: Synthesis and characterization of new membranes deriving from sulfonated polyethersulfone for PEMFC applications. Desalin. Water Treat. 56, 2637–2645 (2015). https://doi.org/10.1080/19443994.2015.1024939 Thmaini, N., Charradi, K., Ahmed, Z., Chtourou, R., Aranda, P.: Nanoarchitectonics of fibrous clays as fillers of improved proton-conducting membranes for fuel-cell applications. Appl. Clay Sci. 242, 107019 (2023). https://doi.org/10.1016/j.clay.2023.107019 Mabrouk, W., Lafi, R., Charradi, K., Ogier, L., Hafiane, A., Fauvarque, J.F., et al.: Synthesis and characterization of new proton exchange membrane deriving from sulfonated polyether sulfone using ionic crosslinking for electrodialysis applications. Polym. Eng. Sci. 60, 3149–3158 (2020). https://doi.org/10.1002/pen.25543 Mabrouk, W., Lafi, R., Hafiane, A.: Electrodialysis performance during the defluoridation of brackish water using ClNH2 membrane. Desalin. Water Treat. 236, 16–25 (2021). https://doi.org/10.5004/dwt.2021.27669 Thangamuthu, P., Moothy, S., Mahimia, B.M., Kannaiyan, D., Deivanayagam, P.: High performance bismuth oxide embedded sulfonated poly ether sulfone composite membranes for fuel cell applications. J. Macromol. Sci. A. 60, 171–180 (2023). https://doi.org/10.1080/10601325.2023.2186793 Charradi, K., Landolsi, Z., Gabriel, L., Mabrouk, W., Koschella, A., Ahmed, Z., et al.: Incorporation of sulfo ethyl cellulose tp augment the performance of sulfonated poly (ether ether ketone) composite for proton exchange membrane fuel cells. J. Solid. State. Electr. 27, 991–999 (2023). https://doi.org/10.1007/s10008-023-05629-0 Eskitoros-Togay, S.M., Emre Bulbul, Y., Cınar, Z.K., Sahin, A., Dilsiz, N.: Fabrication of PVP/sulfonated PES electrospun membranes decorated by sulfonated halloysite nanotubes via electrospinning method and enhanced performance of proton exchange membrane fuel cells. Int. J. Hydrogen. Energ. 48, 280–290 (2023). https://doi.org/10.1016/j.ijhydene.2022.09.214 Charradi, K., Chemek, M., Slimi, B., Ramadan, A.M., Alzahrani, A.Y.A., Chtourou, R., et al.: Fabrication and characterization of polyvalent metals/oxidized polyvinyl alcohol hybrid films with improved proton conductivity and optical performances. J. Polym. Environ. 31, 3167–3181 (2023). https://doi.org/10.1007/s10924-023-02824-y Bagryantseva, I.N., Ponomareva, V.G., Khusnutdinov, V.R.: Intermediate temperature proton electrolytes based on cesium dihydrogen phosphate and poly(vinylidene fluoride-co-hexafluoropropylene. J. Mater. Sci. 56, 14196–14206 (2021). https://doi.org/10.1007/s10853-021-06137-0 Charradi, K., Ahmed, Z., Cid, R.E., Aranda, P., Ruiz-Hitzky, E., Ocon, P., Chtourou, R.: Amelioration of PEMFC performance at high temperature by incorporation of nanofiller (sepiolite/layered double hydroxide) in Nafion membrane. Int. J. Hydrogen. Energ. 44, 10666–10676 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.183